Abstract:
Disclosed herein are electrical contacts for magnetoresistive random access memory (MRAM) devices and related memory structures, devices, and methods. For example, and electrical contact for an MRAM device may include: a tantalum region; a barrier region formed of a first material; and a passivation region formed of a second material and disposed between the tantalum region and the barrier region, wherein the second material includes tantalum nitride and is different from the first material.
Abstract:
An embodiment includes an apparatus comprising: a magnetic tunnel junction (MTJ), between first and second electrodes, comprising a dielectric layer between fixed and free layers; a dielectric film directly contacting sidewalls of the first electrode; and a metallic layer coupled to the side-walls via the dielectric film; wherein (a) a vertical axis intersects the first and second electrodes and the MTJ but not the metallic layer, (b) a first horizontal axis intersects the metallic layer, the dielectric film, and the first electrode; and (c) a second horizontal axis, between the first horizontal axis and the MTJ, intersects the dielectric film and the first electrode but not the capping layer. Other embodiments are described herein.
Abstract:
Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a structure comprising a first contact metal disposed on a source/drain contact of a substrate, and a second contact metal disposed on a top surface of the first contact metal, wherein the second contact metal is disposed within an ILD disposed on a top surface of a metal gate disposed on the substrate.
Abstract:
Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a structure comprising a first contact metal disposed on a source/drain contact of a substrate, and a second contact metal disposed on a top surface of the first contact metal, wherein the second contact metal is disposed within an ILD disposed on a top surface of a metal gate disposed on the substrate.
Abstract:
Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a structure comprising a first contact metal disposed on a source/drain contact of a substrate, and a second contact metal disposed on a top surface of the first contact metal, wherein the second contact metal is disposed within an ILD disposed on a top surface of a metal gate disposed on the substrate.
Abstract:
Methods of forming a memory device structure are described. Those methods may include forming a non-conductive spacer material on a top electrode of a magnetic tunnel junction structure, and then forming a highly selective material on the non-conductive spacer material of the magnetic tunnel junction prior to etching a bottom electrode of the magnetic tunnel junction.
Abstract:
Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a structure comprising a first contact metal disposed on a source/drain contact of a substrate, and a second contact metal disposed on a top surface of the first contact metal, wherein the second contact metal is disposed within an ILD disposed on a top surface of a metal gate disposed on the substrate.
Abstract:
A metal gate fabrication method for nanoribbon-based transistors and associated transistor arrangements, IC structures, and devices are disclosed. An example IC structure fabricated using metal gate fabrication method described herein may include a first stack of N-type nanoribbons, a second stack of P-type nanoribbons, a first gate region enclosing portions of the nanoribbons of the first stack and including an NWF material between adjacent nanoribbons of the first stack, and a second gate region enclosing portions of the nanoribbons of the second stack and including a PWF material between adjacent nanoribbons of the second stack, where the second gate region includes the PWF material at sidewalls of the nanoribbons of the second stack and further includes the NWF material so that the PWF material is between the sidewalls of the nanoribbons of the second stack and the NWF material.
Abstract:
Gate-all-around structures having devices with source/drain-to-substrate electrical contact are described. An integrated circuit structure includes a first vertical arrangement of horizontal nanowires above a first fin. A first gate stack is over the first vertical arrangement of horizontal nanowires. A first pair of epitaxial source or drain structures is at first and second ends of the first vertical arrangement of horizontal nanowires. One or both of the first pair of epitaxial source or drain structures is directly electrically coupled to the first fin. A second vertical arrangement of horizontal nanowires is above a second fin. A second gate stack is over the second vertical arrangement of horizontal nanowires. A second pair of epitaxial source or drain structures is at first and second ends of the second vertical arrangement of horizontal nanowires. Both of the second pair of epitaxial source or drain structures is electrically isolated from the second fin.
Abstract:
A memory apparatus includes an interconnect in a first dielectric above a substrate and a structure above the interconnect, where the structure includes a diffusion barrier material and covers the interconnect. The memory apparatus further includes a resistive random-access memory (RRAM) device coupled to the interconnect. The RRAM device includes a first electrode on a portion of the structure, a stoichiometric layer having a metal and oxygen on the first electrode, a non-stoichiometric layer including the metal and oxygen on the stoichiometric layer. A second electrode including a barrier material is on the non-stoichiometric layer. In some embodiments, the RRAM device further includes a third electrode on the second electrode. To prevent uncontrolled oxidation during a fabrication process a spacer may be directly adjacent to the RRAM device, where the spacer includes a second dielectric.