Abstract:
Flat top beam laser processing schemes are disclosed for producing various types of hetero-junction and homo-junction solar cells. The methods include base and emitter contact opening, back surface field formation, selective doping, and metal ablation. Also, laser processing schemes are disclosed that are suitable for selective amorphous silicon ablation and selective doping for hetero-junction solar cells. These laser processing techniques may be applied to semiconductor substrates, including crystalline silicon substrates, and further including crystalline silicon substrates which are manufactured either through wire saw wafering methods or via epitaxial deposition processes, that are either planar or textured/three-dimensional. These techniques are highly suited to thin crystalline semiconductor, including thin crystalline silicon films.
Abstract:
According to one aspect of the disclosed subject matter, a monolithically isled solar cell is provided. The solar cell comprises a semiconductor layer having a light receiving frontside and a backside opposite the frontside and attached to an electrically insulating backplane. A trench isolation pattern partitions the semiconductor layer into electrically isolated isles on the electrically insulating backplane. A first metal layer having base and emitter electrodes is positioned on the semiconductor layer backside. A patterned second metal layer providing cell interconnection and connected to the first metal layer by via plugs is positioned on the backplane.
Abstract:
Various laser processing schemes are disclosed for producing various types of hetero-junction and homo-junction solar cells. The methods include base and emitter contact opening, selective doping, metal ablation, annealing to improve passivation, and selective emitter doping via laser heating of aluminum. Also, laser processing schemes are disclosed that are suitable for selective amorphous silicon ablation and selective doping for hetero-junction solar cells. Laser ablation techniques are disclosed that leave the underlying silicon substantially undamaged. These laser processing techniques may be applied to semiconductor substrates, including crystalline silicon substrates, and further including crystalline silicon substrates which are manufactured either through wire saw wafering methods or via epitaxial deposition processes, or other cleavage techniques such as ion implantation and heating, that are either planar or textured/three-dimensional. These techniques are highly suited to thin crystalline semiconductor, including thin crystalline silicon films.
Abstract:
Fabrication methods for making back contact back junction solar cells. A base dopant source, a field emitter dopant source, and an emitter dopant source are deposited on the back surface of a solar cell substrate. The solar cell substrate is annealed forming emitter contact regions corresponding to the emitter dopant source, field emitter regions corresponding to the field emitter dopant, and base contact regions corresponding to the base dopant source. The base dopant source, field emitter dopant source, and the emitter dopant source are etched. A backside passivation layer is deposited on the back surface of the solar cell. Contacts are opened to the emitter contact regions and the base contact regions through the backside passivation layer. Patterned base metallization and patterned emitter metallization is formed on the back surface of the solar cell with electrical interconnections to the base contact regions and the emitter contact regions.
Abstract:
Structures and methods for a solar cell having an integrated bypass switch are provided. According to one embodiment, an integrated solar cell and bypass switch comprising a semiconductor layer having background doping, a frontside, and a backside is provided. A patterned first level metal is positioned on the layer backside and an electrically insulating backplane is positioned on the first level metal. A trench isolation pattern partitions the semiconductor layer into a solar cell region and at least one monolithically integrated bypass switch region. A patterned second level metal is positioned on the electrically insulating backplane and which connects to the first level metal through the backplane to complete the electrical metallization of the monolithically integrated solar cell and bypass switch structure.
Abstract:
Passivated contact structures and fabrication methods for back contact back junction solar cells are provided. According to one example embodiment, a back contact back junction photovoltaic solar cell is described that has a semiconductor light absorbing layer having a front side and a backside having base regions and emitter regions. A passivating dielectric insulating layer is on the base and emitter regions. A first electrically conductive contact contacts the passivating dielectric insulating layer together having a work function suitable for selective collection of electrons that closely matches a conduction band of the light absorbing layer. A second electrically conductive contact contacts the passivating dielectric insulating layer together having a work function suitable for selective collection of electrons that closely matches a valence band of the light absorbing layer.
Abstract:
The monolithically isled solar cell comprises a semiconductor layer having a light receiving frontside and a passivated backside opposite the frontside. A first metal layer on the semiconductor layer passivated backside comprises base and emitter metallization islands corresponding to monolithic isled semiconductor regions. An insulating support backplane is attached to the first metal layer and portions of the semiconductor layer passivated backside. Trenches formed through the semiconductor layer to the insulating support backplane in a trench isolation pattern electrically isolate the semiconductor layer into monolithic isled semiconductor regions arranged on the insulating support backplane. Conductive vias through the insulating support backplane contact portions of each of the first metal layer base and emitter metallization islands. A second metal layer base and emitter metallization on the insulating support backplane contacts the first metal layer base and emitter metallization islands. The second metal layer electrically interconnects the monolithic isled semiconductor regions.
Abstract:
The present application provides effective and efficient structures and methods for the formation of solar cell base and emitter regions using laser processing. Laser absorbent passivation materials are formed on a solar cell substrate and patterned using laser ablation to form base and emitter regions.
Abstract:
The present disclosure presents a three-dimensional thin film solar cell (3-D TFSC) substrate having enhanced mechanical strength, light trapping, and metal modulation coverage properties. The substrate includes a plurality of unit cells, which may or may not be different. Unit cells are defined as a small self-contained geometrical pattern which may be repeated. Each unit cell structure includes a wall enclosing a trench. Further, the unit cell includes an aperture having an aperture diameter. For the purposes of the present disclosure, the dimensions of interest include wall thickness, wall height, and aperture diameter. A pre-determined variation in these dimensions among unit cells across the substrate produces specific advantages.
Abstract:
Fabrication methods and structures relating to backplanes for back contact solar cells that provide for solar cell substrate reinforcement and electrical interconnects are described. The method comprises depositing an interdigitated pattern of base electrodes and emitter electrodes on a backside surface of a semiconductor substrate, forming electrically conductive emitter plugs and base plugs on the interdigitated pattern, and attaching a backplane having a second interdigitated pattern of base electrodes and emitter electrodes at the conductive emitter and base plugs to form electrical interconnects.