Abstract:
The assembly comprises two or more catheter tubes fused together to form a fused catheter bundle. Each tube has at least one lumen extending longitudinally through the catheter from its distal end to its proximal end and at least one of said tubes comprises a pressure resistant lumen. The tubes are fused together by use of heat & pressure generated by heat shrinkable tube slides positioned over a segment of the catheter tubes while mandrels are positioned within each tube lumen. After cooling, the heat shrinkable tube may be removed and the mandrels removed such that and the fused catheter bundle is formed. One or more of the tubes may be of a different hardness, material and/or color. A distal end of the fused catheter bundle can be split free floating, stepped or tapered tipped. A non fused portion may form catheter extension legs.
Abstract:
A method for connecting a catheter balloon with a catheter shaft of a balloon catheter that improves the welding quality of a weld between the catheter balloon and the catheter shaft of the balloon catheter. Preferably, a welding energy absorbing device is arranged, preferably in the form of a coloured tubing, in the area of a fixation site after attaching a pre-fixation and then to irradiate this welding energy absorbing device with the radiation energy to carry out the welding. After the welding the pre-fixation and the welding energy absorbing device are removed.
Abstract:
A method of repairing a composite component having a damaged area including: laying a composite patch over the damaged area; activating the shape memory polymer resin to easily and quickly mold said patch to said damaged area; deactivating said shape memory polymer so that said composite patch retains the molded shape; and bonding said composite patch to said damaged part.
Abstract:
A flared strain relief member for medical device delivery systems for stents, prosthetic valve devices, and other implantable articles inside a patient's body are provided. An elongate outer sheath has proximal and distal end portions defining a passageway, and the proximal end portion having an outer layer including melt bonding material. A strain relief member has a tubular first end portion of a first outer diameter and a flared second end portion of a greater second outer diameter. The strain relief member has an inner engaging surface that includes melt bonding material, at least a portion of which disposes concentrically about, and melt bonded to, the outer sheath proximal end portion melt bonding outer layer. The strain relief member second end portion is operatively coupled between a handle first connector and handle second connector. Methods of making a flared strain relief member for medical device delivery systems are also provided.
Abstract:
A device for connecting two elements by shrinking a shrink tube includes a heating element and a control unit. The heating element is adapted for providing thermal or inductive energy and is further adapted such that with it a shrink tube, which can be pulled onto a connection region of two elements to be connected, can be encased along at least part of the circumference of the shrink tube. The control unit is adapted for supplying electrical energy to the heating element and furthermore is adapted such that with it the temperature of the heating element is controllable such that, by shrinking the shrink tube, the two elements are connectable.
Abstract:
The invention is directed to a catheter assembly and the method for forming the same. The catheter includes an elongated shaft having proximal and distal sections, and further includes an inflatable balloon on a portion of the distal shaft section and in surrounding relation thereto. The balloon has proximal and distal tapered regions and an intermediate region longitudinally disposed therebetween. The proximal and distal tapered regions each has a first end adjacent the intermediate region and a second end opposite the first end. The wall thickness of the proximal and distal tapered regions, may, increase from the first end to the second end. A fluid-tight bond is formed between the catheter shaft and at least a section of at least one of the proximal and distal tapered regions at the second end thereof. The bond is preferably a fusion bond. At least a portion of the either or both the proximal and distal tapered regions in the bond interface is at least partially crystalline. Preferably, the crystallinity at the interface is greater than the crystallinity of the starting material from which the balloon is formed.
Abstract:
This invention is directed to a method of bonding thermoplastic catheter parts to a metallic member such as hypotubing and the product formed. The polymeric material is hot pressed against the metallic member with sufficient pressure to ensure plastic deformation of the polymeric material. A fluid tight bond is formed which can withstand pressures of up to 650 psi.
Abstract:
A method for applying a corrosion-protective coating, with a heat-shrinkable tube, to a joint between welded end portions of corrosion-protectively coated steel pipes, has a configuration comprising the steps of: preparing a coating implement having a releasant layer formed on the outer circumferential portion of the heat-shrinkable tube, and a heating layer formed on the outer circumferential portion of the releasant layer; positioning the coating implement so as to cover the welded portion of the joint and its adjacent portions; thermally shrinking the coating implement in a state in which the gap between the coating implement and the aforementioned portions is kept in a vacuum; and removing the releasant layer and the heating layer, whereby the aforementioned portions are corrosion-protectively coated by the heat shrinkage of the tube.
Abstract:
A structural connection is obtained between elements (21, 22) of the reinforcement texture to be assembled by using at least one blocking means (23). The latter is made of a fibrous texture that is compacted prior to being inserted in a corresponding lodging formed in at least one of the elements of the reinforcement texture in order to conform with the shape of the lodging. The blocking means (23) then locks itself into the lodging by relaxation of its fibrous texture, as a result of a removal of the prior compacting. The blocking means can be in the form of a dowel (23) inserted inside aligned lodgings formed in the elements (21, 22) of the reinforcement texture to be assembled, or may alternatively be part of one of the elements of reinforcement texture to be assembled.
Abstract:
A balloon catheter which is assembled by a process of selectively concentrating laser energy along an annular fusion bond site at contiguous surface portions of a length of catheter tubing and a shaft or neck portion of a dilatation balloon. The laser energy wavelength, and the polymeric materials of the balloon and catheter, are matched for high absorption of the laser energy to minimize conductive heat transfer in axial directions away from the bond site. This minimizes crystallization and stiffening in regions near the bond site, permitting fusion bonds to be located close to the proximal and distal cones of the dilatation balloon while preserving the soft, pliant quality of the cones.