Abstract:
A layer system that filters sun and heat can be applied to glass by a vacuum coating process. The system comprises at least one series of metal layers in addition to a respective series of lower dielectric layers and a respective series of upper dielectric layers. At least one series of metal layers and one series of upper and lower dielectric layers are configured as a sandwich system, wherein one metal layer is encapsulated by an upper and a lower intermediate layer consisting of hypostoichiometrically nitrided or oxidized metal of the metal layer and sandwich systems of the series of layers contain individual sandwich layers of a stoichiometric and hypostoichiometric oxide or nitride of a metal or semiconductor. An oxygen or nitrogen deficit of the sandwich layers increases towards a neighboring sandwich system and the oxide and nitride layers are produced in a vacuum coating process.
Abstract:
Now, according to the present invention, functional coatings are provided that comprise both a porous inorganic layer and a polymeric filler. The porous inorganic layer comprises an inorganic material that can be formed into a layer at relatively low heat load. The polymeric filler fills the porosities in the porous inorganic layer, and can be, for example, wet coated onto the porous inorganic layer. The resulting functional coatings offer simpler and cheaper fabrication along with improved physical and optical performance.
Abstract:
A method of preventing or reducing fogging of a surface of a composite when subjected to humid conditions includes providing a composite with a surface. The composite includes a substrate and a photocatalytic surface layer. The photocatalytic surface layer includes a photocatalyst. The method further includes subjecting the photocatalyst to photoexcitation to render the surface of the composite hydrophilic, wherein, after the photoexcitation, the surface of the composite has a water wettability of less than 10° in terms of the contact angle with water. The method further includes subjecting the composite to humidity that is sufficient to induce fogging of the substrate if the photocatalytic surface layer were absent.
Abstract:
The invention provides systems and methods for the deposition of an improved diamond-like carbon material, particularly for the production of magnetic recording media. The diamond-like carbon material of the present invention is highly tetrahedral, that is, it features a large number of the sp3 carbon-carbon bonds which are found within a diamond crystal lattice. The material is also amorphous, providing a combination of short-range order with long-range disorder, and can be deposited as films which are ultrasmooth and continuous at thicknesses substantially lower than known amorphous carbon coating materials. The carbon protective coatings of the present invention will often be hydrogenated. In a preferred method for depositing of these materials, capacitive coupling forms a highly uniform, selectively energized stream of ions from a dense, inductively ionized plasma. Such inductive ionization is enhanced by a relatively slow moving (or nullquasi-staticnull) magnetic field, which promotes resonant ionization and ion beam homogenization.
Abstract:
A soda inclusive glass substrate is coated with a highly tetrahedral amorphous carbon inclusive layer that is a form of diamond-like carbon (DLC). In certain embodiments, the amorphous carbon layer includes at least about 35% sp3 carbon-carbon bonds, more preferably at least about 70%, and most preferably at least about 80% of the sp3 carbon-carbon bonds. The high density (e.g. greater than or equal to about 2.4 gm/cm3) of the amorphous carbon layer prevents soda from exiting the glass and reacting with water at surface(s) of the glass, thereby minimizing visible stains (or corrosion) on the glass. The high density amorphous carbon layer also may repel water. In some embodiments, the highly tetrahedral amorphous carbon layer is part of a larger DLC coating, while in other embodiments the highly tetrahedral layer forms the entirety of a DLC coating on the substrate.
Abstract:
The present invention relates to a method for imparting hydrophilicity to a substrate whereby high hydrophilic properties and water-holding properties can be maintained for a long period of time. According to the present invention, an SiO2 film is formed directly or through an undercoat layer on a substrate under a reduced pressure of 100 Pa or less and immediately after the SiO2 film is formed, the SiO2 film is treated with water. Before forming the SiO2 film, it is also desirable that an undercoat layer consisting of a TiO2 film, Al2O3 film, Nb2O5 film, a laminated film prepared by laminating the TiO2 film on the Al2O3 film, a laminated film prepared by laminating the TiO2 film on the Nb2O5 film, or a low emissivity film be formed on a substrate and the SiO2 film be then formed on the undercoat film to serve as an SiO2 composite film.
Abstract:
The invention provides systems and methods for the deposition of an improved diamond-like carbon material, particularly for the production of magnetic recording media. The diamond-like carbon material of the present invention is highly tetrahedral, that is, it features a large number of the sp3 carbon-carbon bonds which are found within a diamond crystal lattice. The material is also amorphous, providing a combination of short-range order with long-range disorder, and can be deposited as films which are ultrasmooth and continuous at thicknesses substantially lower than known amorphous carbon coating materials. The carbon protective coatings of the present invention will often be hydrogenated. In a preferred method for depositing of these materials, capacitive coupling forms a highly uniform, selectively energized stream of ions from a dense, inductively ionized plasma. Such inductive ionization is enhanced by a relatively slow moving (or “quasi-static”) magnetic field, which promotes resonant ionization and ion beam homogenization.
Abstract:
A substrate is coated with a coating system including diamond-like carbon (DLC) and at least one fluoro-alkyl silane (FAS) compound. In certain embodiments, a method of making a coated article includes providing a substrate; and forming a coating system on said substrate in a manner such that the coating system includes each of diamond-like carbon (DLC) and at least one fluoro-alkyl silane (FAS) compound.
Abstract:
A soda inclusive glass substrate is coated with a highly tetrahedral amorphous carbon inclusive layer that is a form of diamond-like carbon (DLC). In certain embodiments, the amorphous carbon layer includes at least about 35% sp3 carbon-carbon bonds, more preferably at least about 70%, and most preferably at least about 80% of the sp3 carbon-carbon bonds. The high density (e.g. greater than or equal to about 2.4 gm/cm3) of the amorphous carbon layer prevents soda from exiting the glass and reacting with water at surface(s) of the glass, thereby minimizing visible stains (or corrosion) on the glass. The high density amorphous carbon layer also may repel water. In some embodiments, the highly tetrahedral amorphous carbon layer is part of a larger DLC coating, while in other embodiments the highly tetrahedral layer forms the entirety of a DLC coating on the substrate.
Abstract:
A system and method for efficiently removing rain water and the like from a rear window (backlite) of a vehicle. A rear spoiler or air deflector is provided for redirecting air toward the backlite and causing the speed of air flow to increase. A hydrophobic coating is provided on the major exterior surface of the backlite. Air directed by the air deflector over and/or across the surface of the backlite functions to remove the rain water and the like from the backlite. In certain embodiments, the hydrophobic coating may include diamond-like carbon (DLC) deposited on the substrate in a manner to increase its hydrophobicity.