Abstract:
A deposition system and method includes a deposition source, a roll conveyor and at least one shield positioned at a location proximate to the deposition source.
Abstract:
Disclosed is a method of manufacturing a semiconductor device including: performing a pre-process to a metal film or a GST film by supplying a first processing gas to a substrate, on a surface of which the metal film or the GST film is formed, without supplying a second processing gas; and performing a formation process to the substrate to which the pre-process has been performed such that a film is formed on the metal film or the GST film by executing at least one cycle of alternately (i) supplying the first processing gas, and (ii) supplying the second processing gas that is activated by plasma excitation.
Abstract:
Provided is a substrate processing apparatus capable of suppressing the difference between temperatures of a susceptor and the shower head. The substrate processing apparatus includes a process chamber configured to process a substrate; a substrate placement device disposed in the process chamber, the substrate placement device comprising a substrate placement surface where the substrate is placed and a first heater; a shower head disposed opposite to the substrate placement surface, the shower head comprising a second heater and an opposing surface facing the substrate placement surface; a processing gas supply system configured to supply a processing gas for processing the substrate placed on the substrate placement surface into the process chamber via the shower head; an exhaust system configured to evacuate an inner atmosphere of the process chamber; and a controller configured to control outputs of the first heater and the second heater.
Abstract:
A temperature controlled showerhead assembly for chemical vapor deposition (CVD) chambers enhances heat dissipation to provide accurate temperature control of the showerhead face plate and maintain temperatures substantially lower than surrounding components. Heat dissipates by conduction through a showerhead stem and removed by the heat exchanger mounted outside of the vacuum environment. Heat is supplied by a heating element inserted into the steam of the showerhead. Temperature is controlled using feedback supplied by a temperature sensor installed in the stem and in thermal contact with the face plate.
Abstract:
Method of depositing an atomic layer on a substrate. The method comprises supplying a precursor gas from a precursor-gas supply of a deposition head that may be part of a rotatable drum. The precursor gas is provided from the precursor-gas supply towards the substrate. The method further comprises moving the precursor-gas supply by rotating the deposition head along the substrate which in its turn is moved along the rotating drum. The method further comprises switching between supplying the precursor gas from the precursor-gas supply towards the substrate over a first part of the rotation trajectory; and interrupting supplying the precursor gas from the precursor-gas supply over a second part of the rotation trajectory
Abstract:
An electronic device manufacturing system may include a chamber port assembly that provides an interface between a transfer chamber and a process chamber. In some embodiments, the chamber port assembly may be configured to direct a flow of purge gas into a substrate transfer area of the chamber port assembly. In other embodiments, a process chamber and/or the transfer chamber may be configured to direct a flow of purge gas into the substrate transfer area. The flow of purge gas into a substrate transfer area may prevent and/or reduce migration of particulate matter from chamber hardware onto a substrate being transferred between the transfer chamber and a process chamber. Methods of assembling a chamber port assembly are also provided, as are other aspects.
Abstract:
Methods and apparatus for processing substrates are provided herein. In some embodiments, an apparatus for processing substrates includes a chamber body enclosing a processing volume, the chamber body comprising a chamber floor, a chamber wall coupled to the chamber floor, and a chamber lid removably coupled to the chamber wall, wherein at least one of the chamber floor, the chamber wall, and the chamber lid comprise passages for a flow of a thermal control media; a heater plate disposed adjacent to and spaced apart from the chamber floor; a sleeve disposed adjacent to and spaced apart from the chamber wall, the sleeve supported by the heater plate; and a first sealing element disposed at a first interface between the chamber wall and the chamber lid.
Abstract:
A multi chamber thin film deposition apparatus and a method for depositing films, is provided. Each chamber includes a three dimensional gas delivery system including process gases being delivered downwardly toward the substrate and laterally toward the substrate. A pumping system includes an exhaust port in each chamber that is centrally positioned underneath the substrate being processed and therefore the gas flow around all portions of the edge of the substrate are equally spaced from the exhaust port thereby creating a uniform gas flow profile which results in film thickness uniformity of films deposited on both the front and back surfaces of the substrate. The deposited films demonstrate uniform thickness on the front and back of the substrate and extend inwardly to a uniform distance on the periphery of the backside of the substrate.
Abstract:
A process for preparing granular polysilicon using a fluidized bed reactor is disclosed. The upper and lower spaces of the bed are defined as a reaction zone and a heating zone, respectively, with the height of the reaction gas outlet being selected as the reference height. The invention maximizes the reactor productivity by sufficiently providing the heat required and stably maintaining the reaction temperature in the reaction zone, without impairing the mechanical stability of the fluidized bed reactor. This is achieved through electrical resistance heating in the heating zone where an internal heater is installed in a space in between the reaction gas supplying means and the inner wall of the reactor tube, thereby heating the fluidizing gas and the silicon particles in the heating zone. The heat generated in the heating zone is transferred to the reaction zone by supplying the fluidizing gas at such a rate that the silicon particles can be intermixed between the reaction zone and the heating zone in a continuous, fluidized state.
Abstract:
Provided is a substrate processing apparatus. The substrate processing apparatus includes a reaction tube; a heating device configured to heat the reaction tube; and a manifold installed outward as compared with the heating device and made of a non-metallic material. A first thickness of the manifold defined in a direction perpendicular to a center axis of the reaction tube is greater than a second thickness of the manifold defined at a position adjacent to the reaction tube in a direction parallel to the center axis of the reaction tube. The manifold includes a protrusion part of which at least a portion protrudes inward more than an inner wall of the reaction tube, and a gas supply unit disposed at at least the protrusion part for supplying gas to an inside of the reaction tube.