Abstract:
A system and method for locking a door. An assembly has a first engagement surface. A door is coupled to the assembly, the door including a latch member having a second engagement surface for engaging the first engagement surface. A movable member is capable of generating a force against at least one of the assembly and the door to press together and substantially prevent disengagement of the first engagement surface and the second engagement surface.
Abstract:
A metering assembly includes a fluidic chip and metering chambers. Selectable outlet valves communicate with each metering chamber to provide a discrete dispensed volume. The valves may be commonly controlled and may be formed as multi-level valves. The valves may be grouped into common substrate valve clusters. Purge channels communicate with the metering chambers and controlled purge valves allow reverse flow wash fluid to wash the metering chamber. Pressure ports are employed to actuate the valves. A method of dispensing a fluid from the fluidic chip includes a) selectively filling (or filling) the metering chambers with a selected fluid; and b) outputting (or selectively outputting) the fluid to output locations. The total output volume of fluid dispensed from each metering chamber may be accumulated. The process may be repeated until the accumulated volume equals the desired volume and may be repeated for another fluid from a plurality of different fluids.
Abstract:
Pumping systems for pumping shear-sensitive fluids between first and second reservoirs. In various embodiments, the pumping system may include a portable platform that supports at least one diaphragm pump thereon. The diaphragm pumps are arranged for fluid communication with first and second reservoirs. Valve arrangements may be provided that enable the shear-sensitive fluid to be pumped from a first reservoir to a second reservoir. In some embodiments, the valve arrangements enable the user to reverse the flow direction to enable the fluid to be pumped back out of the second reservoir into the first reservoir if too much fluid was initially transferred into the second reservoir. Other embodiments may employ a hand activated nozzle to discharge the pumped fluid.
Abstract:
A fluid displacement mechanism is disclosed. In an embodiment, first and second cavities are separated by a flexible membrane. The first cavity contains a non-conductive fluid and the second cavity contains a conductive fluid. First and second electrodes are positioned in the first and second cavities respectively such that the application of a voltage between the electrodes causes movement of the membrane by the build up of an electrostatic charge between the membrane and first electrode.
Abstract:
A cassette integrated system. The cassette integrated system includes a mixing cassette, a balancing cassette, a middle cassette fluidly connected to the mixing cassette and the balancing cassette and at least one pod. The mixing cassette is fluidly connected to the middle cassette by at least one fluid line and the middle cassette is fluidly connected to the balancing cassette by at least one fluid line. The at least one pod is connected to at least two of the cassettes wherein the pod is located in an area between the cassettes.
Abstract:
A pump cassette is disclosed. The pump cassette includes a housing having at least, one fluid inlet line and at least one fluid outlet line. The cassette also includes at least one reciprocating pressure displacement membrane pump within the housing. The pressure pump pumps a fluid from the fluid inlet line to the fluid outlet line. A hollow spike is also included on the housing as well as at least one metering pump The metering pump is fluidly connected to the hollow spike on the housing and to a metering pump fluid line. The metering pump fluid line is fluidly connected to the fluid outlet line.
Abstract:
A method generates mechanical energy by storing water in a fuel-cell and a pressure equalization device. The water stored in the fuel-cell is electrolyzed into hydrogen gas and oxygen gas, which displaces the water stored in the pressure equalization device. The displaced water is fed to a hydraulic device to drive the hydraulic device in a forward direction to produce mechanical energy.
Abstract:
A container of liquid color material has a diaphragm liquid color pump located therewithin for providing liquid color from the container and non-drip apparatus for releaseably connecting the container with a blender for supply of liquid color thereto and methods for pumping and supplying liquid color incorporating the same. In some embodiments a volumetric controller is utilized for driving and regulating the pump.
Abstract:
A device for cardiocirculatory assistance, also named a ventricular assist device, includes a haematic pump (50) with a pump body (7) having an inner space (21) defined by a rigid structure (51) and a pair of mobile membranes (16, 17) alternately driven in opposite directions by alternately positive pressure and negative pressure gas supplied to recesses (19, 20) surrounding the two membranes by means of an external pneumatic force generating unit (1). This device achieves excellent operation results while maintaining a reduced size and reduced weight.
Abstract:
Liquid flow devices, particularly microfluidic devices, containing solid porous materials. Flow in the devices can be pressure-driven flow and/or electroosmotic flow. The porous materials are preferably pre-shaped, for example divided from a sheet of porous material, so that they can be assembled with liquid-impermeable barrier materials around them. The devices can for example be prepared by lamination. A wide variety of devices, including mixing devices, is disclosed. A mixing device is illustrated in FIG. 23.