Abstract:
A particle beam device comprises a beam generator for generating a particle beam having charged particles and an electrode unit having a first electrode and a second electrode, wherein the first electrode interacts with the second electrode, in particular for guiding, shaping, aligning or correcting the particle beam. Moreover, the particle beam device comprises a low-pass filter being connected with at least one of: the first electrode and the second electrode, using an electrical connection. Additionally, the particle beam device comprises a mounting unit having an opening for the passage of the particle beam, wherein the at least one low-pass filter, the first electrode and the second electrode are arranged at the mounting unit. The electrode unit may comprise more than two electrodes, for example up to 16 electrodes.
Abstract:
A scanning transmission electron microscope according to the present invention includes an electron lens system having a small spherical aberration coefficient for enabling three-dimensional observation of a 0.1 nm atomic size structure. The scanning transmission electron microscope according to the present invention also includes an aperture capable of changing an illumination angle; an illumination electron lens system capable of changing the probe size of an electron beam probe and the illumination angle; a secondary electron detector (9); a transmission electron detector (13); a forward scattered electron beam detector (12); a focusing unit (16); an image processor for identifying image contrast; an image processor for computing image sharpness; a processor for three-dimensional reconstruction of an image; and a mixer (18) for mixing a secondary electron signal and a specimen forward scattered electron signal.
Abstract:
A charged particle microscope corrects distortion in an image caused by effects of drift in the sampling stage by measuring the correction reference image in a shorter time than the observation image, making corrections by comparing the shape of the observation image with the shape of the correction reference image, and reducing distortion in the observation images. The reference image for distortion correction is measured at the same position and magnification as when acquiring images for observation. In order to reduce effects from drift, the reference image is at this time measured within a shorter time than the essential observation image. The shape of the observation image is corrected by comparing the shapes of the reference image and observation image, and correcting the shape of the observation image to match the reference image.
Abstract:
A column for a charged particle beam device is described. The column includes a charged particle emitter for emitting a primary charged particle beam as one source of the primary charged particle beam; a biprism adapted for acting on the primary charged particle beam so that two virtual sources are generated; and a charged particle beam optics adapted to focus the charged particle beam simultaneously on two positions of a specimen corresponding to images of the two virtual sources.
Abstract:
A scanning electron microscope suppresses a beam drift by reducing charging on a sample surface while suppressing resolution degradation upon observation of an insulator sample. An electron microscope includes an electron source and an objective lens that focuses an electron beam emitted from the electron source, which provides an image using a secondary signal generated from the sample irradiated with the electron beam. A magnetic body with a continuous structure and an inside diameter larger than an inside diameter of an upper pole piece that forms the objective lens is provided between the objective lens and the sample.
Abstract:
The present invention relates to charged particle beam devices. The devices comprise an emitter for emitting charged particles; an aperture arrangement with at least two apertures for separating the emitted charged particles into at least two independent charged particle beams; and an objective lens for focusing the at least two independent charged particle beams, whereby the independent charged particle beams are focused onto the same location within the focal plane.
Abstract:
An object of the present invention is to provide a charged particle beam apparatus and an alignment method of the charged particle beam apparatus, which make it possible to align an optical axis of a charged particle beam easily even when a state of the charged particle beam changes. The present invention comprises calculation means for calculating a deflection amount of an alignment deflector which performs an axis alignment for an objective lens, a plurality of calculation methods for calculating the deflection amount is memorized in the calculation means, and a selection means for selecting at least one of the calculation methods is provided.
Abstract:
One embodiment relates to an electron beam apparatus for automated imaging of a substrate surface. An electron source is configured to emit electrons, and a gun lens is configured to focus the electrons emitted by the electron source so as to form an electron beam. A condenser lens system is configured to receive the electron beam and to reduce its numerical aperture to an ultra-low numerical aperture. An objective lens is configured to focus the ultra-low numerical aperture beam onto the substrate surface. Other embodiments are also disclosed.
Abstract:
A charged-particle beam system has a demagnifying lens for reducing the dimensions of an electron beam produced from an electron beam source, an objective lens for focusing the demagnified beam onto the surface of a target, a first deflector located before the demagnifying lens, a second deflector placed such that the deflection field produced by it is totally or partially superimposed on the objective lens field, and a third deflector located in a stage following the second deflector. An image of the light source is created by the demagnifying lens. An image of the light source image is formed on the target by the objective lens.
Abstract:
An apparatus for characterization of a micro beam comprising a micro modified Faraday cup assembly including a first layer of material, a second layer of material operatively connected to the first layer of material, a third layer of material operatively connected to the second layer of material, and a fourth layer of material operatively connected to the third layer of material. The first layer of material comprises an electrical conducting material and has at least one first layer radial slit extending through the first layer. An electrical ground is connected to the first layer. The second layer of material comprises an insulating material and has at least one second layer radial slit corresponding to the first layer radial slit in the first layer of material. The second layer radial slit extends through the second layer. The third layer of material comprises a conducting material and has at least one third layer radial slit corresponding to the second layer radial slit in the second layer of material. The third layer radial slit extends through the third layer. The fourth layer of material comprises an electrical conducting material but does not have slits. An electrical measuring device is connected to the fourth layer. The micro modified Faraday cup assembly is positioned to be swept by the micro beam.