Abstract:
This invention adds to the art of replacement source-drain cMOS transistors. Processes may involve etching a recess in the substrate material using one equipment set, then performing deposition in another. Disclosed is a method to perform the etch and subsequent deposition in the same reactor without atmospheric exposure. In-situ etching of the source-drain recess for replacement source-drain applications provides several advantages over state of the art ex-situ etching. Transistor drive current is improved by: (1) Eliminating contamination of the silicon-epilayer interface when the as-etched surface is exposed to atmosphere and (2) Precise control over the shape of the etch recess. Deposition may be done by a variety of techniques including selective and non-selective methods. In the case of blanket deposition, a measure to avoid amorphous deposition in performance critical regions is also presented.
Abstract:
Embodiments are an improved transistor structure and the method of fabricating the structure. In particular, a wet etch of an embodiment forms source and drain regions with an improved tip shape to improve the performance of the transistor by improving control of short channel effects, increasing the saturation current, improving control of the metallurgical gate length, increasing carrier mobility, and decreasing contact resistance at the interface between the source and drain and the silicide.
Abstract:
Methods and associated apparatus of forming a microelectronic structure are described. Those methods comprise providing a substrate comprising a region of higher active area density comprising source and drain recesses and a region of lower active area density comprising source and drain recesses, wherein the region of lower active area density further comprises dummy recesses, and selectively depositing a silicon alloy layer in the source, drain and dummy recesses to enhance the selectivity and uniformity of the silicon alloy deposition.
Abstract:
Some embodiments of the present invention include providing carbon doped regions and raised source/drain regions to provide tensile stress in NMOS transistor channels.
Abstract:
A gate structure may be utilized as a mask to form source and drain regions. Then the gate structure may be removed to form a gap and spacers may be formed in the gap to define a trench. In the process of forming a trench into the substrate, a portion of the source drain region is removed. Then the substrate is filled back up with an epitaxial material and a new gate structure is formed thereover. As a result, more abrupt source drain junctions may be achieved.
Abstract:
There is disclosed an apparatus including a straining substrate, a device over the substrate including a channel, wherein the straining substrate strains the device in a direction substantially perpendicular to a direction of current flow in the channel.
Abstract:
An embodiment of the invention reduces the external resistance of a transistor by utilizing a silicon germanium alloy for the source and drain regions and a nickel silicon germanium self-aligned silicide (i.e., salicide) layer to form the contact surface of the source and drain regions. The interface of the silicon germanium and the nickel silicon germanium silicide has a lower specific contact resistivity based on a decreased metal-semiconductor work function between the silicon germanium and the silicide and the increased carrier mobility in silicon germanium versus silicon. The silicon germanium may be doped to further tune its electrical properties. A reduction of the external resistance of a transistor equates to increased transistor performance both in switching speed and power consumption.
Abstract:
Various embodiments of the invention relate to a CMOS device having (1) an NMOS channel of silicon material selectively deposited on a first area of a graded silicon germanium substrate such that the selectively deposited silicon material experiences a tensile strain caused by the lattice spacing of the silicon material being smaller than the lattice spacing of the graded silicon germanium substrate material at the first area, and (2) a PMOS channel of silicon germanium material selectively deposited on a second area of the substrate such that the selectively deposited silicon germanium material experiences a compressive strain caused by the lattice spacing of the selectively deposited silicon germanium material being larger than the lattice spacing of the graded silicon germanium substrate material at the second area.
Abstract:
An embodiment of the invention reduces the external resistance of a transistor by utilizing a silicon germanium alloy for the source and drain regions and a nickel silicon germanium self-aligned silicide (i.e., salicide) layer to form the contact surface of the source and drain regions. The interface of the silicon germanium and the nickel silicon germanium silicide has a lower specific contact resistivity based on a decreased metal-semiconductor work function between the silicon germanium and the silicide and the increased carrier mobility in silicon germanium versus silicon. The silicon germanium may be doped to further tune its electrical properties. A reduction of the external resistance of a transistor equates to increased transistor performance both in switching speed and power consumption.
Abstract:
An epitaxially deposited source/drain extension may be formed for a metal oxide semiconductor field effect transistor. A sacrificial layer may be formed and etched away to undercut under the gate electrode. Then a source/drain extension of epitaxial silicon may be deposited to extend under the edges of the gate electrode. As a result, the extent by which the source/drain extension extends under the gate may be controlled by controlling the etching of the sacrificial material. Its thickness and depth may be controlled by controlling the deposition process. Moreover, the characteristics of the source/drain extension may be controlled independently of those of the subsequently formed deep or heavily doped source/drain junction.