Abstract:
The present invention provides a method for manufacturing a gate electrode and a contact wire simultaneously in a gate last process, comprising the steps of: forming a gate trench in an inter layer dielectric layer on a substrate; forming a filling layer in the gate trench and on the inter layer dielectric layer; etching the filling layer and the inter layer dielectric layer to expose the substrate, to thereby form a source/drain contact hole; removing the filling layer to expose the gate trench and the source/drain contact hole; forming metal silicide in the source/drain contact hole; depositing a gate dielectric layer and a metal gate in the gate trench; filling metal in the gate trench and the source/drain contact hole; and planarizing the filled metal. In accordance with the manufacturing method of the present invention, the gate electrode wire will be made of the same metal material as the contact hole such that the two can be manufactured by one CMP process. Such a design has the advantages of simplifying complexity of process integration on one hand and greatly strengthening control of defects by CMP process on the other hand, thereby avoiding the defects like erosion and dishing that may be produced between different metal materials.
Abstract:
A semiconductor device and a method for programming the same are provided. The semiconductor device comprises: a semiconductor substrate with an interconnect formed therein; a Through-Silicon Via (TSV) penetrating through the semiconductor substrate; and a programmable device which can be switched between on and off states, the TSV being connected to the interconnect by the programmable device. The present invention is beneficial in improving flexibility of TSV application.
Abstract:
An embedded source/drain MOS transistor and a formation method thereof are provided. The embedded source/drain MOS transistor comprises: a semiconductor substrate; a gate structure on the semiconductor substrate; and a source/drain stack embedded in the semiconductor substrate at both sides of the gate structure with an upper surface of the source/drain stack being exposed, wherein the source/drain stack comprises a dielectric layer and a semiconductor layer above the dielectric layer. The present invention can cut off the path for the leakage current from the source region and the drain region to the semiconductor substrate, thereby reducing the leakage current from the source region and the drain region to the semiconductor substrate.
Abstract:
A method for filling a gap includes: providing a semiconductor substrate, at least having an metal interconnect layer and an insulating dielectric layer on top of the underlying metal interconnect layer, the insulating dielectric layer having a gap; forming a diffusion bather layer and a seed layer sequentially in the gap and on a surface of the insulating dielectric layer outside the gap; forming a mask layer on a surface of the seed layer outside of the gap; and depositing a metal layer on the semiconductor substrate with the mask layer, the metal layer filling the gap.
Abstract:
The invention discloses a novel MOSFET device fabricated by a gate last process and its implementation method, the device comprising: a substrate; a gate stack structure located on a channel region in the substrate, on either side of which is eliminated the conventional isolation spacer; an epitaxially grown ultrathin metal silicide constituting a source/drain region. Wherein the device eliminates the high resistance region below the conventional isolation spacer; a dopant segregation region with imlanted ions is formed between the source/drain and the channel region, which decreases the Schottky barrier height between the metal silicide source/drain and the channel. At the same time, the epitaxially grown metal silicide can withstand a second high-temperature annealing used for improving the performance of a high-k gate dielectric material, which further improves the performance of the device. The MOSFET according to the invention reduces the parasitic resistance and capacitance greatly and thereby decreases the RC delay, thus improving the switching performance of the MOSFET device significantly.
Abstract:
A method for restricting lateral encroachment of the metal silicide into the channel region, comprising: providing a semiconductor substrate, a gate stack being formed on the semiconductor substrate, a source region being formed in the semiconductor on one side of the gate stack, and a drain region being formed in the semiconductor substrate on the other side of the gate stack; forming a sacrificial spacer around the gate stack and on the semiconductor substrate; depositing a metal layer for covering the semiconductor substrate, the gate stack and the sacrificial spacer; performing a thermal treatment on the semiconductor substrate, thereby causing the metal layer to react with the sacrificial spacer and the semiconductor substrate in the source region and the drain region; removing the sacrificial spacer, reaction products of the sacrificial spacer and the metal layer, and a part of the metal layer which does not react with the sacrificial spacer.
Abstract:
There is provided a method for manufacturing a semiconductor wafer, comprising: performing heating so that metals dissolve into semiconductors of the wafer to form a semiconductor-metal compound; and performing cooling so that the formed semiconductor-metal compound retrogradely melt to form a mixture of the metals and the semiconductors. According to embodiments of the present invention, it is possible to achieve wafers of a high purity applicable to the semiconductor manufacture.
Abstract:
Disclosed is a semiconductor device, comprising a substrate, a channel region in the substrate, source/drain regions on both sides of the channel region, a gate structure on the channel region, and gate sidewall spacers formed on the sidewalls of the gate structure, characterized in that each of the source/drain regions comprises an epitaxially grown metal silicide region, and dopant segregation regions are formed at the interfaces between the epitaxially grown metal silicide source/drain regions and the channel region. By employing the semiconductor device and the method for manufacturing the same according to embodiments of the present invention, the Schottkey Barrier Height of the MOSFETs with epitaxially grown ultrathin metal silicide source/drain may be lowered, thereby improving the driving capability.
Abstract:
A method comprises providing a free buffer pool in a memory including a non-negative number of free buffers that are not allocated to a queue for buffering data. A request is received to add one of the free buffers to the queue. One of the free buffers is allocated to the queue in response to the request, if the queue has fewer than a first predetermined number of buffers associated with a session type of the queue. One of the free buffers is allocated to the queue, if a number of buffers in the queue is at least as large as the first predetermined number and less than a second predetermined number associated with the session type, and the number of free buffers is greater than zero.
Abstract:
Dielectric material compositions comprising HfO2 and a second compound are disclosed. The compositions are characterized by at least a part of the compositions being in a cubic crystallographic phase. Further, semiconductor based devices comprising such dielectric material compound and method for forming such compounds are disclosed.
Abstract translation:公开了包含HfO 2 N 2和第二化合物的介电材料组合物。 组合物的特征在于至少一部分组合物为立方晶相。 此外,公开了包含这种介电材料化合物的基于半导体的器件及其形成方法。