Abstract:
An integrated semiconductor heating assembly includes a semiconductor substrate, a chamber formed therein, and an exit port in fluid communication with the chamber, allowing fluid to exit the chamber in response to heating the chamber. The integrated heating assembly includes a first heating element adjacent the chamber, which can generate heat above a selected threshold and bias fluid in the chamber toward the exit port. A second heating element is positioned adjacent the exit port to generate heat above a selected threshold, facilitating movement of the fluid through the exit port away from the chamber. Addition of the second heating element reduces the amount of heat emitted per heating element and minimizes thickness of a heat absorption material toward an open end of the exit port. Since such material is expensive, this reduces the manufacturing cost and retail price of the assembly while improving efficiency and longevity thereof.
Abstract:
A system and method for object inspection includes an object modeler; an iterative object segmentor in signal communication with the object modeler for receiving an input image and model parameters and producing a segmented image; a moment transformer in signal communication with the iterative object segmentor for receiving an input image, model parameters and a segmented image and producing estimates of object translation, rotation and scaling; an edge detector and interpolator in signal communication with the moment transformer for receiving an input image, model parameters and estimates and producing a set of line edges; and an iterative optimizer in signal communication with the edge detector and interpolator for receiving an input image, model parameters, estimates and line edges and producing refined estimates of object translation, rotation and scaling.
Abstract:
A semiconductor device includes a semiconductor material substrate, an opto-electric component formed on the substrate, and a first transparent layer formed on an upper surface of the substrate over the component, the layer having a planar upper surface with a cavity formed therein. The first transparent layer has a selected thickness and a first index of refraction. The semiconductor device further includes a lens having a second index of refraction, the lens being formed in the cavity by flowing a flowable dielectric over the substrate. An upper surface of the lens and the upper surface of the transparent layer may be coplanar, or alternatively, they may lie in separate planes. The semiconductor device may also include a second transparent layer formed over the first layer and lens, as a passivation layer.
Abstract:
Methods of forming a microelectronic structure are described. Embodiments of those methods include forming a barrier layer on a substrate, wherein the barrier layer comprises molybdenum; and forming a lead free interconnect structure on the barrier layer.
Abstract:
A structure including a substrate, a copper bump formed over the substrate, and a barrier layer comprising an alloy of at least one of iron and nickel, formed over the copper bump, and methods to make such a structure.
Abstract:
Connection between optical fibers and optical components within a semiconductor substrate. A lens is created at the front of a semiconductor substrate. A tapered hole is created in the back of the substrate exposing part or all of the surface of the lens. An optical component is formed or affixed at the front surface of the substrate. A volume of transparent adhesive is placed in the hole, followed by an optical fiber, which is thus coupled to the surface of the lens. A light guide is created on the front of the substrate overlying the lens to direct optical signals between the optical fiber inserted in the tapered hole and the optical component on the surface of the substrate.
Abstract:
A system and method for modeling binaural shells for hearing aids, wherein the system is configured to load data associated with a first and a second ear shell. The system is further configured to register the data associated with the first and the second ear shells and process the first ear shell and the second ear shells, wherein the processing on the first ear shell is automatically performed on the second ear shell.
Abstract:
A computer-implemented method for inspecting BGA components using a ball grid array model thereof in semiconductor surface mounted devices. The method comprises setting a plurality of regions of interest (ROIs) for all BGA balls to be modeled, building a first grid model that includes coordinates and a diameter of the BGA balls in the plurality of ROIs, setting a plurality of regions of interest (ROIs) containing a BGA body to be modeled, detecting four body boundaries to localize four corner coordinates, determining a body orientation from orientations of four boundaries, calculating an orientation of each boundary by the projection of the edge of boundary, and comparing the BGA components with an obtained BGA model to inspect the BGA components based on ball sizes and ball distributions.
Abstract:
A system and method for electronic archival of paper-based technical drawings includes a system having a processor, a form learning unit in signal communication with the processor for learning the form of a model drawing image, a form localization unit in signal communication with the processor for localizing the form of an input drawing image, an optical character recognition unit in signal communication with the processor for optically recognizing identification text of the input drawing image, and a result verification unit in signal communication with the processor for verifying the results of the recognized identification text of the input drawing image; and further includes a method for providing a model drawing image, learning the form of the provided model drawing image, receiving an input drawing image, localizing the form of the input drawing image, optically recognizing identification text of the input drawing image, verifying the results of the recognized identification text of the input drawing image, and storing the input drawing image and the corresponding verified identification text into a drawing database.
Abstract:
An apparatus and a method are disclosed comprising a timepiece, a color display device, and an information source device with one or more information sources. The color display device may display different colors or color patterns depending on time and the one or more information sources, such as a luckiness index and personal information. The information source device comprised of a fixed, removable or remote storage device may provide the one or more information sources. The color display device may be comprised of display screens of electronic devices, such as computers, hand-held, cellular phones, and portable media players, as well as objects illuminated by a plurality of light sources.