Abstract:
Compression cold welding methods, joint structures, and hermetically sealed containment devices are provided. The method includes providing a first substrate having at least one first joint structure which comprises a first joining surface, which surface comprises a first metal; providing a second substrate having at least one second joint structure which comprises a second joining surface, which surface comprises a second metal; and compressing together the at least one first joint structure and the at least one second joint structure to locally deform and shear the joining surfaces at one or more interfaces in an amount effective to form a metal-to-metal bond between the first metal and second metal of the joining surfaces. Overlaps at the joining surfaces are effective to displace surface contaminants and facilitate intimate contact between the joining surfaces without heat input. Hermetically sealed devices can contain drug formulations, biosensors, or MEMS devices.
Abstract:
According to one embodiment, a strain sensing element provided on a deformable substrate includes: a first magnetic layer; a second magnetic layer; a spacer layer; and a bias layer. Magnetization of the second magnetic layer changes according to deformation of the substrate. The spacer layer is provided between the first magnetic layer and the second magnetic layer. The second magnetic layer is provided between the spacer layer and the bias layer. The bias layer is configured to apply a bias to the second magnetic layer.
Abstract:
The present invention provides methods utilizing current nano-technological processes for fabricating a range of micro-devices with significantly expanded capabilities, unique functionalities at microscopic levels, enhanced degree of flexibilities, reduced costs and improved performance in the fields of bioscience and medicine. Such fabricated micro-devices have significant improvements in many areas over the existing, conventional methods, which include, but are not limited to reduced overall costs, early disease detection, targeted drug delivery, targeted disease treatment and reduced degree of invasiveness in treatment.
Abstract:
Embodiments of the invention include a method for fabricating a semiconductor device, the resulting structure, and a method for using the resulting structure. A substrate is provided. A hard mask layer is patterned over at least a portion of the substrate. Regions of the substrate not protected by the hard mask are doped to form a source region and a drain region. The hard mask layer is removed. A dielectric layer is deposited on the substrate. An insulative layer is deposited on the dielectric layer. A nano-channel is created by etching a portion of the insulative layer which passes over the source region and the drain region.
Abstract:
The present invention relates to a method for producing microcarriers comprising the following steps: (a) providing a wafer having a sandwich structure comprising a bottom layer, a top layer and an insulating layer located between said bottom and top layers, (b) etching away the top layer to delineate lateral walls of bodies of the microcarriers, (c) depositing a first active layer at least on a top surface of the bodies, (d) applying a continuous polymer layer over the first active layer, (e) etching away the bottom layer and the insulating layer, (f) removing the polymer layer to release the microcarriers.
Abstract:
The present invention provides methods utilizing current nano-technological processes for fabricating a range of micro-devices with significantly expanded capabilities, unique functionalities at microscopic levels, enhanced degree of flexibilities, reduced costs and improved performance in the fields of bioscience and medicine. Such fabricated micro-devices have significant improvements in many areas over the existing, conventional methods, which include, but are not limited to reduced overall costs, early disease detection, targeted drug delivery, targeted disease treatment and reduced degree of invasiveness in treatment. Compared with existing, conventional approaches, the said inventive approach disclosed in this patent application is much more microscopic, sensitive, accurate, precise, flexible and effective.
Abstract:
The present invention relates to a method for functionalising fluid lines (1b) in a micromechanical device, the walls of which include an opaque layer. For this purpose, the invention provides a method for functionalising a micromechanical device provided with a fluid line including a peripheral wall (5) having a surface (2) outside the line and an inner surface (3) defining a space (1b) in which a fluid can circulate, the peripheral wall at least partially including a silicon layer (5a). The method includes the following steps: a) providing a device, the peripheral wall (5) of which at least partially includes a silicon layer (5a) having, at least locally, a thickness (e) of more than 100 nm and less than 200 nm, advantageously of 160 to 180 nm; c) silanising at least the inner surface of the fluid line; d) the localised, selective photo-deprotection on at least the inner surface of the silanised device by exposing the peripheral wall (5) at the point at which said wall has a thickness (e) of more than 100 nm and less than 200 nm, advantageously of 160 to 180 nm.
Abstract:
An apparatus includes a substrate having a top surface, a substantially regular array of raised structures located over the top surface, and a layer located on the top surface between the structures. Distal surfaces of the structures are farther from the top surface than remaining portions of the structures. The layer is able to contract such that the distal surfaces of the structures protrude through the layer. The layer is able to swell such that the distal surfaces of the structures are closer to the top surface of the substrate than one surface of the layer.
Abstract:
Provided is a method of preparing a patterned spot microarray using a photocatalyst. The method comprises coating the photocatalyst on a substrate to form a photocatalyst layer, coating a composition comprising a functional group to be connected to a biomolecule on the photocatalyst layer to form an organic layer, spotting the biomolecule on the organic layer, positioning a photomask above a spot of the biomolecule; and irradiating the spot through the photomask to pattern the spot.
Abstract:
A method for fabricating a fluid container, wherein at least two half containers are mated in said fluid to be contained in said container. This method allows the incorporation of prefabricated devices into each half containers as well as the functional coupling of these devices after mating of the half containers, thus resulting in a functional hybrid MEMS fluid container.