Abstract:
An optical electronics device includes first, second and third wafers. The first wafer has a semiconductor substrate with a dielectric layer on a side of the semiconductor substrate. The second wafer has a transparent substrate with an anti-reflective coating on a side of the transparent substrate. The first wafer is bonded to the second wafer at a silicon dioxide layer between the semiconductor substrate and the anti-reflective coating. The first and second wafers include a cavity extending from the dielectric layer through the semiconductor substrate and through the silicon dioxide layer to the anti-reflective coating. The third wafer includes micromechanical elements. The third wafer is bonded to the dielectric layer, and the micromechanical elements are contained within the cavity.
Abstract:
Disclosed herein an inertial sensor and a method of manufacturing the same. An inertial sensor 100 according to a preferred embodiment of the present invention is configured to include a plate-shaped membrane 110, a mass body 120 that includes an adhesive part 123 disposed under a central portion 113 of the membrane 110 and provided at the central portion thereof and a patterning part 125 provided at an outer side of the adhesive part 123 and patterned to vertically penetrate therethrough, and a first adhesive layer 130 that is formed between the membrane 110 and the adhesive part 123 and is provided at an inner side of the patterning part 125. An area of the first adhesive layer 130 is narrow by isotropic etching using the patterning part 125 as a mask, thereby making it possible to improve sensitivity of the inertial sensor 100.
Abstract:
A method for manufacturing a microelectromechanical systems (MEMS) structure with sacrificial supports to prevent stiction is provided. A first etch is performed into an upper surface of a carrier substrate to form a sacrificial support in a cavity. A thermal oxidation process is performed to oxidize the sacrificial support, and to form an oxide layer lining the upper surface and including the oxidized sacrificial support. A MEMS substrate is bonded to the carrier substrate over the carrier substrate and through the oxide layer. A second etch is performed into the MEMS substrate to form a movable mass overlying the cavity and supported by the oxidized sacrificial support. A third etch is performed into the oxide layer to laterally etch the oxidized sacrificial support and to remove the oxidized sacrificial support. A MEMS structure with anti-stiction bumps is also provided.
Abstract:
A method for manufacturing a microelectromechanical systems (MEMS) structure with sacrificial supports to prevent stiction is provided. A first etch is performed into an upper surface of a carrier substrate to form a sacrificial support in a cavity. A thermal oxidation process is performed to oxidize the sacrificial support, and to form an oxide layer lining the upper surface and including the oxidized sacrificial support. A MEMS substrate is bonded to the carrier substrate over the carrier substrate and through the oxide layer. A second etch is performed into the MEMS substrate to form a movable mass overlying the cavity and supported by the oxidized sacrificial support. A third etch is performed into the oxide layer to laterally etch the oxidized sacrificial support and to remove the oxidized sacrificial support. A MEMS structure with anti-stiction bumps is also provided.
Abstract:
The invention relates to a silicon-based component with at least one reduced contact surface which, formed from a method combining at least one oblique side wall etching step with a “Bosch” etch of vertical side walls, improves, in particular, the tribology of components formed by micromachining a silicon-based wafer.
Abstract:
A method for structuring a layered structure, for example, of a micromechanical component, from two semiconductor layers between which an insulating and/or etch stop layer is situated includes forming a first etching mask on a first side of the first semiconductor layer, carrying out a first etching step, starting from a first outer side, for structuring the first semiconductor layer, forming a second etching mask on a second side of the second semiconductor layer, and carrying out a second etching step, starting from the second outer side, for structuring the second semiconductor layer. After carrying out the first etching step and prior to carrying out the second etching step, at least one etching protection material is deposited on at least one trench wall of at least one first trench, which is etched in the first etching step.
Abstract:
An optical electronic device and method that forms cavities through an interposer wafer after bonding the interposer wafer to a window wafer. The cavities are etched into the bonded interposer/window wafer pair using the anti-reflective coating of the window wafer as an etch stop. After formation of the cavities, the bonded interposer/window wafer pair is bonded peripherally of die areas to the MEMS device wafer, with die area micromechanical elements sealed within respectively corresponding ones of the cavities.
Abstract:
A method for fabricating a MEMS device includes providing a micro-electro-mechanical system (MEMS) substrate having a sacrificial layer on a first side, providing a carrier including a plurality of cavities, bonding the first side of the MEMS substrate on the carrier, forming a first bonding material layer on a second side of the MEMS substrate, applying a sacrificial layer removal process to the MEMS substrate, providing a semiconductor substrate including a second bonding material layer and bonding the semiconductor substrate on the second side of the MEMS substrate.
Abstract:
Etching islands are formed on a first face of a substrate and a second face of the substrate non-parallel to the first face. The first face and the second face of the substrate are concurrently exposed to a solution that reacts with the etching islands to concurrently form porous regions extending into the first face and the second face.
Abstract:
An physical quantity sensor includes a substrate, a piezoelectric resistive element that is disposed on one surface side of the substrate, a wall portion that is disposed on the one surface side of the substrate so as to surround the piezoelectric resistive element in a plan view of the substrate, and a ceiling portion that is disposed on an opposite side to the substrate with respect to the wall portion and forms a cavity along with the wall portion, in which the wall portion includes an insulating layer, and wiring layers that surround the insulating layer together and have higher resistance to an etchant which can etch the insulating layer than resistance of the insulating layer.