Abstract:
Apparatuses and methods for high density laser optics are provided. An example, of a laser optics apparatus includes a plurality of vertical cavity surface emitting lasers (VCSELs) in a monolithically integrated array, a high contrast grating (HCG) integrated with an aperture of a vertical cavity of each of the plurality of the VCSELs to enable emission of a single lasing wavelength of a plurality of lasing wavelengths, and a plurality of single mode waveguides, each integrated with a grating coupler, that are connected to each of the plurality of the integrated VCSELs and the HCGs, where each of the grating couplers is aligned to an integrated VCSEL and HCG.
Abstract:
The 2D-PC vertical cavity surface emitting laser includes: a PC layer; and a lattice point for forming resonant-state arranged in the photonic crystal layer, and configured so that a light wave in a band edge in photonic band structure in the PC layer is diffracted in a plane of the PC layer, and is diffracted in a surface vertical direction of the PC layer. The perturbation for diffracting the light wave in the surface vertical direction of the PC layer is applied to the lattice point for forming resonant-state. The term “perturbation” means that modulation is periodically applied to the lattice point for forming resonant-state. For example, the periodic modulation may be refractive index modulation, hole-diameter modulation, or hole-depth modulation.
Abstract:
A multicolor photonic crystal laser array comprises pixels of monolithically grown gain sections each with a different emission centre wavelength. As an example, two-dimensional surface-emitting photonic crystal lasers comprising broad gain-bandwidth III-nitride multiple quantum well axial heterostructures were fabricated using a novel top-down nanowire fabrication method. Single-mode lasing was obtained in the blue-violet spectral region with 60 nm of tuning (or 16% of the nominal centre wavelength) that was determined purely by the photonic crystal geometry. This approach can be extended to cover the entire visible spectrum.
Abstract:
A saturable absorber (SA) based on a high-contrast grating (HCG) having a buried layer of quantum structures for absorption, and which is particularly well suited for use in a mode-locked application. The HCG-SA provides three times the bandwidth compared with traditional DBR structures, while exhibiting a lower saturation fluence due to the field enhancement inside the grating. Varying grating bar width over one or two axis provides lensing effects on the optical output, while chirping of the period and duty cycle changes optical phase relationships. Novel VCSEL embodiments with external or internal cavities are described using the HCG-SA.
Abstract:
Enhanced reflectivity High-Contrast Gratings are described which operate in different medium. An HCG is described with a deep/buried metallization layer separated at a distance of least three to four grating thicknesses from the grating. Reflective bandwidth of the HCG is substantially increased, such as by a factor or five, by inclusion of the deep/buried metallization layer. An HCG is described which provides high reflectivity, even when embedded into materials of a moderate to high index of refraction, such as semiconductor material. Vertical cavity surface emitting laser embodiments are described which utilize these reflectivity enhancements, and preferably utilize HCG reflectors for top and/or bottom mirrors.
Abstract:
The invention relates to an optically pumped ultrashort pulse microchip laser for generating a laser emission having femto- or picosecond pulses, comprising a substrate, an amplifying laser medium, a first resonator mirror that is at least partially transparent to optical pump radiation, and in particular a saturable absorber structure. The laser medium is applied to the resonator mirror and the substrate and subsequently reduced from the original material thickness to a thickness of less than 200 μm. In order to achieve satisfactory power absorption despite said low thickness, the optical pump radiation is coupled into the laser medium such that resonance occurs for the laser emission and excess intensity increases occur for the pump radiation.
Abstract:
Vertical cavity light emitting sources that utilize patterned membranes as reflectors are provided. The vertical cavity light emitting sources have a stacked structure that includes an active region disposed between an upper reflector and a lower reflector. The active region, upper reflector and lower reflector can be fabricated from single or multi-layered thin films of solid states materials (“membranes”) that can be separately processed and then stacked to form a vertical cavity light emitting source.
Abstract:
Methods for manufacturing a polarization pinned vertical cavity surface emitting laser (VCSEL). Steps include growing a lower mirror on a substrate; growing an active region on the lower mirror; growing an upper mirror on the active region; depositing a grating layer on the upper minor; and etching a grating into the grating layer.
Abstract:
A surface emitting laser is provided with an upper reflecting mirror having a photonic crystal structure with a point defect at the center, and emits a laser beam from the side of a lower reflecting mirror. An upper electrode is formed on the point defect at the center, and element resistance is reduced. A material transparent to a wavelength of the laser beam is used for a substrate. The emission efficiency is improved by reducing the element resistance of the photonic crystal surface emitting laser.
Abstract:
The invention relates to fabrication of VCSELs. It provides a method for fabricating a VCSEL that contains a micro/nano-structured mode selective lateral layer, where the micro/nano-structured layer is obtained by well controlled local etching. The invention enables control of the micro/nano-structured layer thickness with very high precision. In particular, the invention relates to a method for fabricating a VCSEL with a micro/nano-structured mode selective layer for controlling the VCSELs transverse electromagnetic modes.