Abstract:
A lighting device includes a heatsink 70, a socket 10 and an LED module 60. The LED module 60 has a light emitting unit 62 in a central part of a top side of a metal base substrate 63 composed of an insulating plate and a metal plate. The LED module 60 is warped such that the central part protrudes on a heatsink 70 side, which is the side opposite to the light emitting unit 62 side. The LED module 60 is mounted on the heatsink 70 in a state of the surrounds of the light emitting unit 62 being pressed according to pressing units 14T, 14L, and 14D of the socket 10. Pressing the surrounds of the light emitting unit 62 against the heatsink 70 ensures that a central part of the warping of the LED module 60 contacts the heatsink 70.
Abstract:
A rotating electric motor includes a rotary shaft capable of rotation, a stator core formed in a cylindrical configuration, a rotor core fixed to the rotary shaft, a magnet set at the rotor core such that a pair of magnetic poles of different magnetism are aligned in the radial direction of the rotor core, a field yoke provided at the perimeter of the stator core, and a winding that can control the magnetic flux density across the rotor core and the stator core by forming a magnetic circuit across the field yoke and the rotor core.
Abstract:
A wiring board used for mounting an LED bare chip capable of firmly bonding the LED bare chip and improving yield. In a printed wiring board 2, a distance D between wiring patterns 81 and 85 disposed so as to oppose each other is the smallest at a position nearest to a center point (G) of an LED chip 14 disposed at a designed location, and increases with an increasing distance from the point G. In addition, pattern edges 83 and 87 of the wiring patterns 81 and 85 recede in the direction of widening the distance D as a distance from the center point G increases with respect to electrode edges 148 and 149 of the LED chip 14.
Abstract:
An LED illumination source comprises a heat dissipating substrate which includes a metal plate and at least two insulating layers thereon. LEI) bare chips are mounted on a surface of the substrate. An optical reflector with holes surrounds the LED bare chips. The optical reflector is provided on the surface of the substrate on which the LED bare chips are mounted. A resin encapsulates the entire optical reflector on the substrate, the resin molding each of the LED bare chips and functioning as an optical lens for each of the LED bare chips.
Abstract:
In a module socket, a connecter and a connector are connected by wiring, and three LED modules are connected in parallel with respect to a constant voltage circuit unit via the wiring. Each module has a constant current circuit unit and an LED mounting unit. The constant current circuit unit includes one resistor and two transistors mounted on a surface of a sub-substrate on which a conductive land is formed. The sub-substrate is bonded to a main substrate.
Abstract:
A number of red LEDs, green LEDs, and blue LEDs are mounted on one surface of a polygonal flexible multilayer substrate. The LEDs are connected in series according to color. A red feeder terminal, a green feeder terminal, a blue feeder terminal, and a common terminal are provided on each of at least three sides of the periphery of the flexible multilayer substrate. Circuit patterns for connecting LEDs at the high-potential end of the red, green, and blue series-connected LEDs respectively to the red feeder terminals, green feeder terminals, and blue feeder terminals are provided to the flexible multilayer substrate. Also, a circuit pattern for connecting LEDs at the low-potential end of the red, green, and blue series-connected LEDs all to the common terminals is provided to the flexible multilayer substrate.
Abstract:
In the present invention, a plurality of concaves are provided for one main surface of a flexible substrate by press-forming. Each concave has a flat surface which is substantially parallel to the main surface of the substrate, and mounted on the flat surface are three LEDs each emitting colored light of red, green, and blue respectively.
Abstract:
A number of red LEDs, green LEDs, and blue LEDs are mounted on one surface of a multilayer flexible substrate having a round plane figure. The LEDs are connected in series according to color. At least three sets of terminals which are each made up of a red feeder terminal, a green feeder terminal, a blue feeder terminal, and a common feeder terminal are provided on the periphery of the flexible substrate. Wiring patterns for connecting LEDs at the high-potential end of the red, green, and blue series-connected LEDs respectively to the red feeder terminals, the green feeder terminals, and the blue feeder terminals are provided to the flexible substrate. Also, a wiring pattern for connecting LEDs at the low-potential end of the red, green, and blue series-connected LEDs all to the common feeder terminals is provided to the flexible substrate.