Abstract:
A method for local pattern density control of a device layout used by graphoepitaxy directed self-assembly (DSA) processes includes importing a multi-layer semiconductor device design into an assist feature system and determining overlapping regions between two or more layers in the multi-layer semiconductor device design using at least one Boolean operation. A fill for assist features is generated to provide dimensional consistency of device features by employing the overlapping regions to provide placement of the assist features. An updated device layout is stored in a memory device.
Abstract:
Hybrid pre-patterns were prepared for directed self-assembly of a given block copolymer capable of forming a lamellar domain pattern. The hybrid pre-patterns have top surfaces comprising independent elevated surfaces interspersed with adjacent recessed surfaces. The elevated surfaces are neutral wetting to the domains formed by self-assembly. Material below the elevated surfaces has greater etch-resistance than material below the recessed surfaces in a given etch process. Following other dimensional constraints of the hybrid pre-pattern described herein, a layer of the given block copolymer was formed on the hybrid pre-pattern. Self-assembly of the layer produced a lamellar domain pattern comprising self-aligned, unidirectional, perpendicularly oriented lamellae over the elevated surfaces, and parallel and/or perpendicularly oriented lamellae over recessed surfaces. The domain patterns displayed long range order along the major axis of the pre-pattern. The lamellar domain patterns are useful in forming transfer patterns comprising two-dimensional customized features.
Abstract:
A method of forming a via to an underlying layer of a semiconductor device is provided. The method may include forming a pillar over the underlying layer using a sidewall image transfer process. A dielectric layer is formed over the pillar and the underlying layer; and a via mask patterned over the dielectric layer, the via mask having a mask opening at least partially overlapping the pillar. A via opening is etched in the dielectric layer using the via mask, the mask opening defining a first lateral dimension of the via opening in a first direction and the pillar defining a second lateral dimension of the via opening in a second direction different than the first direction. The via opening is filled with a conductor to form the via. A semiconductor device and via structure are also provided.
Abstract:
Hybrid pre-patterns were prepared for directed self-assembly of a given block copolymer capable of forming a lamellar domain pattern. The hybrid pre-patterns have top surfaces comprising independent elevated surfaces interspersed with adjacent recessed surfaces. The elevated surfaces are neutral wetting to the domains formed by self-assembly. Material below the elevated surfaces has greater etch-resistance than material below the recessed surfaces in a given etch process. Following other dimensional constraints of the hybrid pre-pattern described herein, a layer of the given block copolymer was formed on the hybrid pre-pattern. Self-assembly of the layer produced a lamellar domain pattern comprising self-aligned, unidirectional, perpendicularly oriented lamellae over the elevated surfaces, and parallel and/or perpendicularly oriented lamellae over recessed surfaces. The domain patterns displayed long range order along the major axis of the pre-pattern. The lamellar domain patterns are useful in forming transfer patterns comprising two-dimensional customized features.
Abstract:
A method for DSA fin patterning includes forming a BCP layer over a lithographic stack, the BCP layer having first and second blocks, the lithographic stack disposed over a hard mask and substrate, and the hard mask including first and second dielectric layers; removing the first block to define a fin pattern in the BCP layer with the second block; etching the fin pattern into the first dielectric layer; filling the fin pattern with a tone inversion material; etching back the tone inversion material that overfills the fin pattern; removing the first dielectric layer selectively to define an inverted fin pattern from the tone inversion material; etching the inverted fin pattern into the second dielectric layer of the hard mask; removing the tone inversion material; and transferring the inverted fin pattern of the second dielectric layer into the substrate to define fins.
Abstract:
A method for defining a template for directed self-assembly (DSA) materials includes forming an etch stop layer on a neutral material, forming a mask layer on the etch stop layer and forming an anti-reflection coating (ARC) on the mask layer. A resist layer is patterned on the ARC using optical lithography to form a template pattern. The ARC and the mask layer are reactive ion etched down to the etch stop layer in accordance with the template pattern to form a template structure. The ARC is removed from the mask layer and the template structure is trimmed to reduce a width of the template structure. A wet etch is performed to remove the etch stop layer to permit the neutral material to form an undamaged DSA template for DSA materials.
Abstract:
A method of semiconductor manufacture comprising forming a plurality of first mandrels as the top layer of the multi-layered hard mask and forming a first spacer around each of the plurality of first mandrels. Removing the plurality of first mandrels and cutting the first spacer to form a plurality of second mandrels. Forming a second spacer around each of the plurality of second mandrels and forming a first self-aligned pattern that includes a plurality of third mandrels. Removing the plurality of second mandrels and the second spacer and etching the multi-layered hard mask to transfer the first-self aligned pattern to a lower layer of the multi-layered hard mask. Forming a second self-aligned pattern, wherein the second self-aligned pattern is intermixed with the first self-aligned pattern and etching the first self-aligned pattern and the second self-aligned pattern into the conductive metal layer.
Abstract:
A device includes: a first dielectric material; a first metal line in the first dielectric material; a second dielectric material disposed on the first dielectric material and the first metal line; a second metal line in the second dielectric material; and a plurality of metal vias disposed on a same level and connecting the first metal line and the second metal line, wherein the plurality of metal vias comprise a first top via and a bottom via having different sidewall profile angles.
Abstract:
The present invention relates to integrated circuits and related method steps for forming an IC chip. The method steps result in semiconductor device structures that include redundant same via level formation using a top via subtractive etch and bottom via from dual damascene etch techniques. In embodiments, the same level redundancy via option is optional. Provision of redundant same via level connections using dual damascene processes improves device resistance and capacitive performance. Further method steps result in semiconductor device structures that include a direct super via connection bypassing subtractive etch metal level via formations. These highlighted method steps increase design flexibility—and reduce device footprint (by skipping a metal level) with the benefit of reduced via connection height and shorter metal connections. Such method steps and resulting IC device structures utilizes the underutilized space and allows further size reduction of the IC chips without adversely impacting the device performance.
Abstract:
A method of forming a self-aligned top via is provided. The method includes forming a metallization layer on a substrate, and forming a hardmask layer on the metallization layer. The method further includes forming a pair of adjacent parallel mandrels on the hardmask layer with sidewall spacers on opposite sides of each mandrel. The method further includes forming a planarization layer on the exposed portions of the hardmask layer, mandrels, and sidewall spacers, and forming an opening in the planarization layer aligned between the adjacent parallel mandrels. The method further includes forming a spacer layer in the opening, and removing portions of the spacer layer to form a pair of spacer plugs between sections of the sidewall spacers.