摘要:
Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. In an example, a method of dicing a semiconductor wafer having a plurality of integrated circuits involves forming a mask above the semiconductor wafer, the mask composed of a layer covering and protecting the integrated circuits. The mask is then patterned with a line shaped laser beam profile laser scribing process to provide a patterned mask with gaps, exposing regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then plasma etched through the gaps in the patterned mask to singulate the integrated circuits.
摘要:
A niobium or niobium alloy which contains pure or substantially pure niobium and at least one metal element selected from the group consisting of Ru, Rh, Pd, Os, Ir, Pt, Mo, W and Re to form a niobium alloy that is resistant to aqueous corrosion. The invention also relates to the process of preparing the niobium alloy.
摘要:
Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. In an example, a method of dicing a semiconductor wafer having a plurality of integrated circuits involves applying an adhesive layer to a front side of the semiconductor wafer. A mask layer is laminated onto the front side of the semiconductor wafer, the mask layer covering and protecting the integrated circuits. The adhesive layer adheres the mask layer to the front side of the semiconductor wafer. The mask layer is patterned with a laser scribing process to provide gaps in the mask layer, the gaps exposing regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is plasma etched through the gaps in the mask layer to singulate the integrated circuits.
摘要:
A method and system of hybrid dicing using a blade and laser are described. In one embodiment, a method involves focusing a laser beam inside the substrate in regions between the integrated circuits, inducing defects inside the substrate in the regions. The method also involves forming a groove on a surface of the substrate with a blade saw in the regions. The method further involves singulating the integrated circuits at the regions with the induced defects and the groove. In one embodiment, a system includes a laser module configured to focus a laser beam inside the substrate in regions between the integrated circuits, inducing defects inside the substrate in the regions. A blade grooving module is configured to form a groove in a surface of the substrate with a blade saw in the regions.
摘要:
Methods of using a screen-print mask for hybrid wafer dicing using laser scribing and plasma etch described. In an example, a method of dicing a semiconductor wafer having a plurality of integrated circuits separated by streets involves screen-printing a patterned mask above the semiconductor wafer, the patterned mask covering the integrated circuits and exposing the streets of the semiconductor wafer. The method also involves laser ablating the streets with a laser scribing process to expose regions of the semiconductor wafer between the integrated circuits. The method also involves plasma etching the semiconductor wafer through the exposed regions of the semiconductor wafer to singulate the integrated circuits. The patterned mask protects the integrated circuits during the plasma etching.
摘要:
Methods and systems for dicing a semiconductor wafer including a plurality of integrated circuits (ICs) are described. In one embodiment, a method involves adhering an adhesive tape to a thin water soluble dry film. The method involves applying the thin water soluble dry film adhered to the adhesive tape over a surface of the semiconductor wafer. The method involves removing the adhesive tape from the thin water soluble dry film. The thin water soluble dry film is patterned with a laser scribing process, exposing regions of the semiconductor wafer between the ICs. The method involves etching the semiconductor wafer through gaps in the patterned thin water soluble dry film, and removing the thin water soluble dry film.
摘要:
A niobium or niobium alloy which contains pure or substantially pure niobium and at least one metal element selected from the group consisting of Ru, Rh, Pd, Os, Ir, Pt, Mo, W and Re to form a niobium alloy that is resistant to aqueous corrosion. The invention also relates to the process of preparing the niobium alloy.
摘要:
The present invention is directed to a composition consisting essentially of: a) from about 60 to about 99 mole % of SnO2, and b) from about 1 to about 40 mole % of one or more materials selected from the group consisting of i) Nb2O5, ii) NbO, iii) NbO2, iv) WO2, v) a material selected consisting of a) a mixture of MoO2 and Mo and b) Mo, vi) W, vii) Ta2O5, and viii) mixtures thereof, wherein the mole % s are based on the total product and wherein the sum of components a) and b) is 100. The invention is also directed to the sintered product of such composition, a sputtering target made from the sintered product and a transparent electroconductive film made from the composition.
摘要翻译:本发明涉及一种基本上由以下组成的组合物:a)约60-约99摩尔%的SnO 2,和b)约1-约40摩尔%的一种或多种选自i)Nb 2 O 5 ,ii)NbO,iii)NbO 2,iv)WO 2,v)选自a)MoO 2和Mo的混合物和b)Mo,vi)W,vii)Ta 2 O 5和viii)其混合物的材料,其中所述摩尔 %s基于总产物,其中组分a)和b)的总和为100.本发明还涉及这种组合物的烧结产品,由烧结产品制成的溅射靶和由 组成。
摘要:
The present invention relates to novel compounds of formula (I) or (II), their pharmaceutically acceptable salts and their hydrates, solvates, stereoisomers, conformers, tautomers, polymorphs and prodrugs and also pharmaceutically acceptable compositions containing them Wherein R1, R2, R3, R4, R5, R6 and R7 are as defined in the specification. The compounds of the present invention are HSP inducers and by virtue of this effect, useful for the treatment of various diseases accompanying pathological stress. The present invention also relates to a process for the preparation of the said novel compounds. The invention also relates to the use of the above-mentioned compounds for the preparation of medicament for use as pharmaceuticals.
摘要:
A process to chemically refine and consolidate tantalum, niobium and their alloys to a fabricated product of net shape or near-net shape with higher throughput, more consistency, and lower manufacturing costs compared to prior art routes or rejuvenate damaged and deteriorated refractory metal parts. Powder metal is loaded into hoppers to be fed into laser forming/melting equipment. A suitable substrate is loaded into a laser forming/melting chamber onto which the powder will be deposited and consolidated in a point-scan process. As the powder is fed onto successive points of the surface of the substrate in linear traces, the laser is used to heat and partially melt the substrate and completely melt the powder. A combined deposition and melt beam traces the substrate surface repeatedly over a selected area to build up a dense coating of controlled microstructure in multiple layers. A fully dense deposit is built up that becomes the desired shape.