Abstract:
It is provided in a liquid application system for applying liquid to a material cake transported on a conveyor device having a liquid application device, that the conveyor device comprises a porous section on which the material cake lies or which the material cake contacts and which is permeable for a liquid to be applied, that the liquid application device comprises an application device via which the liquid to be applied can be applied to the side of the porous section of the conveyor device facing away from the material cake, and that the liquid application device comprises an overpressure chamber having a first overpressure relative to the environment by which the porous section of the conveyor device passes, wherein the applied liquid can be transported via the first overpressure through the porous section of the conveyor device or held via the first overpressure to the porous section.
Abstract:
A deicer has Calcium Magnesium Acetate in a concentration greater than 25% by volume, leaving a remaining concentration, rock salt in the remaining concentration to form a mixture wherein water is added to the mixture such that the mixture dissolves in the water when the deicer is ready for use. A method of use for a deicer has the steps of adding water to a deicing mixture of Calcium Magnesium Acetate and rock salt, mixing the water and mixture such that the mixture dissolves in the water, to form a liquid deicer, and spreading the liquid deicer on ice. A deicing traction aid has a mixture comprising Calcium Magnesium Acetate in a concentration greater than 25% by volume, leaving a remaining concentration, rock salt in the remaining concentration, and a plurality of particles, wherein each particle is coated in the mixture.
Abstract:
The invention relates to a drier for an air drying auto-oxidisable resin composition comprising a polymer comprising unsaturated fatty acid residues, the drier comprising a manganese triaza complex comprising the following structure: wherein R1=C1-C20alkyl optionally substituted with heteroatoms, or C6-C20aryl optionally substituted with heteroatoms; X and Y are independently selected from O and OC(R2)O, in which a=4 when X=O, and a=3 when X=OC(R2)O, and in which b=4 when Y=O, and b=3 when Y=OC(R2)O; Wherein R2=C1-C20alkyl optionally substituted with heteroatoms, C6-C20 aryl optionally substituted with heteroatoms, or a polymeric residue, and one or more anions, being chosen PF6-, SbF6—, AsF6-, BF4—, B(C6F5)4—, Cl—, Br—, I—, NO3—, or R3COO— or SO42−, and wherein R3 is C1-C20alkyl optionally substituted with heteroatoms, C6-C20aryl 1optionally substituted with heteroatoms, or a polymeric residue, and wherein the drier comprises an additional amount of, 4,7-trialkyl-1,4,7-triazacyclononane; wherein the 1,4,7-trialkyl-1,4,7-triazacyclononane (L) is present in an amount such that the molar ratio of L:Mn is at least 1.25:1 and preferably at least 1.5:1.
Abstract:
Disclosed is a coating composition and coated film having the coating composition adhered thereto in which the coating composition comprises particulate filler; binder composition comprising acrylic polymer and ethylene acrylic acid copolymers; non-cross-linking adhesion promoter; and optionally urethane polymer, styrene-acrylic copolymer, or a combination thereof; and wherein cross-linker(s) are substantially absent from the composition; and wherein the coated film has a 45° Gloss (ASTM D2457) of less than 30 or 25 or 20 or 15. The coated film is useful for pressure sensitive labels for thermal transfer ribbon printing labels.
Abstract:
A composition is provided, comprising microcapsules, wherein said microcapsules comprise a core and an outer shell, wherein said core comprises one or more water-insoluble compound having melting point above 15° C., and wherein said outer shell comprises one or more amino resin that is a reaction product of reactants comprising (a) one or more monomer polyamine, (b) one or more aldehyde, and (c) one or more compound (c) selected from the group consisting of additive diamines, additive diols, additive amino-alcohols, and mixtures thereof.
Abstract:
Disclosed is a composition for ferroelectric thin film formation which is used in the formation of a ferroelectric thin film of one material selected from the group consisting of PLZT, PZT, and PT. The composition for ferroelectric thin film formation is a liquid composition for the formation of a thin film of a mixed composite metal oxide formed of a mixture of a composite metal oxide (A) represented by general formula (1): (PbxLay)(ZrzTi(1-z))O3 [wherein 0.9
Abstract translation:公开了用于形成选自PLZT,PZT和PT的一种材料的铁电薄膜的铁电薄膜形成用组合物。 铁电薄膜形成用组合物是由通式(1)表示的复合金属氧化物(A):(PbxLay)(ZrzTi(Zr x Ti y))的混合物形成的混合复合金属氧化物的薄膜的液体组合物, 1)表示的复合氧化物(B)或羧酸(B),通式(2)表示的化合物(其中0.9
Abstract:
The invention relates to a membrane including a partition layer, wherein the partition layer contains at least 50 wt % of PVC, and a barrier layer. The barrier layer can be a barrier layer, wherein the barrier layer has a polyamide layer containing more than 50 wt % of copolymer, wherein said polyamide layer is connected to the partition layer by a polyurethane layer, wherein the polyurethane layer contains more than 10 wt % of polyurethane. Alternatively, the barrier layer can be a barrier layer, wherein the barrier layer is made of a composition containing 5-50 wt % of polyurethane and 50-95 wt % of copolymer. The membranes according to the invention have significantly lower plasticizer migration compared to the membranes of the prior art and are characterized by improved aging resistance, in particular with regard to the adhesion of the barrier layer to the partition layer, and impermeability to moisture.
Abstract:
Method for flow coating a polymeric material, wherein at leasta. one component (1) is inserted at an angle of 25° to 90° relative to the floor (5) into a holder (2),b. the component (1) is coated from an upper edge (1a) with a varnish (3) and the varnish (3) is, in the meantime or thereafter, impinged on within a region of 30% of the surface of the component (1) adjacent the upper edge (1a) by a stream of air (4).
Abstract:
Methods and systems for cleaning, coating and sealing leaks in existing pipes, in a single operation. A piping system can be cleaned in one pass by dry particulates forced and pulled by air throughout the piping system by a generator and a vacuum. Pipes can be protected from water corrosion, erosion and electrolysis, extending the life of pipes such as copper, steel, lead, brass, cast iron piping and composite materials. Coatings can be applied to pipes having diameters up to approximately 6″. Leak sealants of at least approximately 4 mils thick can cover insides of pipes, and can include novel mixtures of fillers and epoxy materials, and viscosity levels. A positive pressure can be maintained within the pipes during applications. Piping systems can be returned to service within approximately 96 hours.
Abstract:
The invention is a coating apparatus including: a substrate-holding part that holds a substrate horizontally; a chemical nozzle that supplies a chemical to a central portion of the substrate horizontally held by the substrate-holding part; a rotation mechanism that causes the substrate-holding part to rotate to thereby spread out the chemical on a surface of the substrate by centrifugal force, for coating the whole surface with the chemical; a gas-flow-forming unit that forms a down flow of an atmospheric gas on the surface of the substrate horizontally held by the substrate-holding part; a gas-discharging unit that discharges an atmosphere around the substrate; and a gas nozzle that supplies a laminar-flow-forming gas to the surface of the substrate, the laminar-flow-forming gas having a coefficient of kinematic viscosity larger than that of the atmospheric gas; wherein the atmospheric gas or the laminar-flow-forming gas are supplied to the central portion of the substrate.