Method and apparatus for performing laser CVD
    81.
    发明授权
    Method and apparatus for performing laser CVD 有权
    用于执行激光CVD的方法和装置

    公开(公告)号:US07211300B2

    公开(公告)日:2007-05-01

    申请号:US10698884

    申请日:2003-10-31

    CPC classification number: C23C16/483 C23C16/047

    Abstract: An element is deposited by flowing a gas through a solid donor compound that includes the element, and over a substrate. The flow of gas deposits a film of a few monolayers of donor compound on the substrate. An optical radiation source (e.g., a femtosecond laser) which produces optical radiation at an instantaneous intensity sufficient to cause non linear or otherwise enhanced interaction between optical radiation photons and the donor compound is used to decompose the donor compound and deposit the metal on the substrate. After an initial deposit of the donor compound is produced, optical radiation can be absorbed and heat the substrate in the localized area of the deposit in order to accelerate the deposition process by thermally decomposing the donor compound.

    Abstract translation: 通过使气体流过包括元件的固体给体化合物并在基底上沉积元素。 气体的流动将一些单层供体化合物的膜沉积在基材上。 使用产生光辐射的光辐射源(例如,飞秒激光),其瞬时强度足以引起光辐射光子和供体化合物之间的非线性或其它增强的相互作用,以分解供体化合物并将金属沉积在基底上 。 在产生供体化合物的初始沉积之后,可以吸收光辐射并加热沉积物的局部区域中的基底,以通过热分解供体化合物来加速沉积过程。

    Laser surface treatment
    83.
    发明申请
    Laser surface treatment 有权
    激光表面处理

    公开(公告)号:US20060213880A1

    公开(公告)日:2006-09-28

    申请号:US11388973

    申请日:2006-03-27

    CPC classification number: G02B1/118 C23C16/483 G02B1/11 G02B1/12

    Abstract: A laser surface treatment for reducing reflection loss on the surface of an optical material is provided. A metal film is formed on the surface of the optical material, and then the metal film is removed from the optical material by irradiation of an ultra-intense short-pulse laser beam having a pulse width of 1 femtosecond to 100 picoseconds, so that a fine periodic structure is formed on the surface of the optical material exposed by the removal of the metal film. The obtained fine periodic structure has asperities with a periodic interval of preferably 50 to 1000 nm, which can be controlled by changing the laser energy density.

    Abstract translation: 提供了用于减少光学材料表面上的反射损失的激光表面处理。 在光学材料的表面上形成金属膜,然后通过照射脉冲宽度为1飞秒至100皮秒的超强度短脉冲激光束将光学材料除去金属膜,使得 通过去除金属膜而露出的光学材料的表面上形成微细的周期性结构。 所获得的微细周期结构具有优选为50〜1000nm的周期性间隔的粗糙度,其可以通过改变激光能量密度来控制。

    Method and apparatus for performing laser CVD
    86.
    发明授权
    Method and apparatus for performing laser CVD 失效
    用于执行激光CVD的方法和装置

    公开(公告)号:US06656539B1

    公开(公告)日:2003-12-02

    申请号:US09711269

    申请日:2000-11-13

    CPC classification number: C23C16/483 C23C16/047

    Abstract: An element is deposited by flowing a gas through a solid donor compound that includes the element, and over a substrate. The flow of gas deposits a film of a few monolayers of donor compound on the substrate. An optical radiation source (e.g., a femtosecond laser) which produces optical radiation at an instantaneous intensity sufficient to cause non linear or otherwise enhanced interaction between optical radiation photons and the donor compound is used to decompose the donor compound and deposit the metal on the substrate. After an initial deposit of the donor compound is produced, optical radiation can be absorbed and heat the substrate in the localized area of the deposit in order to accelerate the deposition process by thermally decomposing the donor compound.

    Abstract translation: 通过使气体流过包括元件的固体给体化合物并在基底上沉积元素。 气体的流动将一些单层供体化合物的膜沉积在基材上。 使用产生光辐射的光辐射源(例如,飞秒激光),其瞬时强度足以引起光辐射光子和供体化合物之间的非线性或其它增强的相互作用,以分解供体化合物并将金属沉积在基底上 。 在产生供体化合物的初始沉积之后,可以吸收光辐射并加热沉积物的局部区域中的基底,以通过热分解供体化合物来加速沉积过程。

    Sequential method for depositing a film by modulated ion-induced atomic layer deposition (MII-ALD)
    87.
    发明申请
    Sequential method for depositing a film by modulated ion-induced atomic layer deposition (MII-ALD) 有权
    通过调制离子诱导的原子层沉积(MII-ALD)沉积薄膜的顺序方法

    公开(公告)号:US20020164421A1

    公开(公告)日:2002-11-07

    申请号:US10137851

    申请日:2002-05-03

    Abstract: The present invention relates to an enhanced sequential atomic layer deposition (ALD) technique suitable for deposition of barrier layers, adhesion layers, seed layers, low dielectric constant (low-k) films, high dielectric constant (high-k) films, and other conductive, semi-conductive, and non-conductive films. This is accomplished by 1) providing a non-thermal or non-pyrolytic means of triggering the deposition reaction; 2) providing a means of depositing a purer film of higher density at lower temperatures; and, 3) providing a faster and more efficient means of modulating the deposition sequence and hence the overall process rate resulting in an improved deposition method.

    Abstract translation: 本发明涉及适用于阻挡层,粘附层,种子层,低介电常数(低k)膜,高介电常数(高k)膜等的沉积的增强的顺序原子层沉积(ALD)技术 导电,半导电和非导电膜。 这通过以下方式实现:1)提供触发沉积反应的非热或非热解方法; 2)提供在较低温度下沉积更高密度的较纯膜的方法; 和3)提供更快和更有效的调节沉积顺序的手段,并因此提供总体处理速率,从而产生改进的沉积方法。

    Continuous method for depositing a film by modulated ion-induced atomic layer deposition (MII-ALD)
    88.
    发明授权
    Continuous method for depositing a film by modulated ion-induced atomic layer deposition (MII-ALD) 有权
    通过调制离子诱导原子层沉积(MII-ALD)沉积薄膜的连续方法

    公开(公告)号:US06416822B1

    公开(公告)日:2002-07-09

    申请号:US09812486

    申请日:2001-03-19

    Abstract: The present invention relates to an enhanced non-sequential atomic layer deposition (ALD) technique suitable for deposition of barrier layers, adhesion layers, seed layers, low dielectric constant (low-k) films, high dielectric constant (high-k) films, and other conductive, semi-conductive, and non-conductive films. This is accomplished by 1) providing a non-thermal or non-pyrolytic means of triggering the deposition reaction; 2) providing a means of depositing a purer film of higher density at lower temperatures; and, 3) providing a faster and more efficient means of modulating the deposition sequence and hence the overall process rate resulting in an improved deposition method.

    Abstract translation: 本发明涉及适用于阻挡层,粘附层,种子层,低介电常数(低k)膜,高介电常数(high-k)膜)的沉积的增强的非顺序原子层沉积(ALD)技术, 和其他导电,半导电和非导电膜。 这通过以下方式实现:1)提供触发沉积反应的非热或非热解方法; 2)提供在较低温度下沉积更高密度的较纯膜的方法; 和3)提供更快和更有效的调节沉积顺序的手段,并因此提供总体处理速率,从而产生改进的沉积方法。

    Technique for the fabrication of bulk porous diamond
    90.
    发明授权
    Technique for the fabrication of bulk porous diamond 失效
    散装多孔钻石的制造技术

    公开(公告)号:US5885541A

    公开(公告)日:1999-03-23

    申请号:US888970

    申请日:1997-07-07

    CPC classification number: C23C16/483 C01B31/06 C23C16/045 C23C16/27

    Abstract: A method and system for fabricating porous polycrystalline diamond material whose volume is described by a dimension larger than 1 mm, with no upper limit on size. A net shape diamond part is fabricated by compacting small diamond particles into a mold and then performing chemical vapor deposition (CVD) growth of diamond on the particles until they are joined into a porous whole. The CVD growth of diamond is achieved by photofragmentation of vapor phase Fullerene, C.sub.60, molecules in the pores. C.sub.60 molecules are vaporized from solid C.sub.60 at a temperature of about 800.degree. C. The vapor diffuses into the voids between the diamond particles in the mold. The vapor is then subjected to intense illumination by a laser which causes the C.sub.60 molecules fragment. The deposition of these fragments causes diamond growth to occur on all surfaces around the pores between the particles. Continual replenishment of the C.sub.60 by the vapor source allows continuous deposition. The transparency of the diamond particles allows penetration of the laser illumination into the volume of the particles. After sufficient deposition and growth, diamond connections are made between the particles, making the entire mass a porous, single diamond entity.

    Abstract translation: 一种用于制造多孔多晶金刚石材料的方法和系统,其体积由大于1mm的尺寸描述,在尺寸上没有上限。 通过将小金刚石颗粒压实到模具中,然后对颗粒进行金刚石的化学气相沉积(CVD)生长,直到它们连接成多孔整体来制造网状金刚石部件。 金刚石的CVD生长通过气相Fullerene,C60,孔中的分子的光致发光来实现。 C60分子在约800℃的温度下从固体C60蒸发。蒸气扩散到模具中的金刚石颗粒之间的空隙中。 然后通过导致C60分子片段的激光对蒸气进行强烈照射。 这些碎片的沉积导致在颗粒周围的孔周围的所有表面上发生金刚石生长。 通过蒸气源连续补充C60可以连续沉积。 金刚石颗粒的透明度允许将激光照射穿透到颗粒的体积中。 在充分的沉积和生长之后,在颗粒之间形成金刚石连接,使整个团块成为多孔的单一金刚石实体。

Patent Agency Ranking