Abstract:
A system includes an internal combustion engine having a number of cylinders, with at least one of the cylinders plumbed to have a complete recycle of the exhaust gases from the cylinder. The system further includes the completely recycled cylinder having an EGR stroke cycle, and the non-recycled cylinders of the engine having an exhaust stroke cycle. The system includes the EGR stroke cycle being distinct from the exhaust stroke cycle. An amount and composition of the exhaust gases from the recycled cylinder are distinct from the amount and composition of the exhaust gases from the non-recycled cylinders, at least at certain operating conditions of the engine.
Abstract:
Methods and systems are provided for adjusting the opening of a scroll valve of a binary flow turbine. Scroll valve adjustments are used at different engine operating conditions to improve engine performance and boost response. Scroll valve adjustments are coordinated with wastegate and EGR valve adjustments for improved engine control.
Abstract:
In an air handling system of a uniflow-scavenged, two-stroke cycle opposed-piston engine, one or more engine operating state parameters are sensed, numerical values of air handling parameters based on trapped conditions in a cylinder of the engine at the last port closing of an engine operating cycle are determined in response to the sensed parameters, the numerical values are evaluated, and one or more of the numerical values is adjusted in response to the evaluation. The adjusted numerical values are used to control charge air flow and EGR flow in the air handling system.
Abstract:
An engine system having donor cylinders and non-donor cylinders is disclosed. The engine system may have a first intake manifold configured to distribute air into the non-donor cylinders, and a second intake manifold separate from the first intake manifold and configured to distribute air into the donor cylinders. The engine system may also have a first exhaust manifold configured to discharge exhaust from the non-donor cylinders to the atmosphere, and a second exhaust manifold separate from the first exhaust manifold and configured to recirculate exhaust from the donor cylinders to the first intake manifold. The engine system may further have an orifice configured to regulate a flow rate of air flowing into the second intake manifold, a blower configured to regulate a flow rate of exhaust that is recirculated from the donor cylinders to the first intake manifold, and a controller configured to selectively control at least one of the orifice and the blower in response to a desired exhaust gas recirculation operating condition.
Abstract:
The present invention discloses a novel engine controlled by combustion reaction path, which cylinders comprise working cylinders and reforming cylinders. According to the operational condition of engine, the engine is used for compressing, heating and reforming the fuel injected from the reforming cylinder injector; by controlling the reaction boundary conditions between fuel and air, the reforming cylinder can exhaust partial intermediate products or oxidation products of the different oxidation stages; the products are then mixes with the inlet air in the pre-mixing chamber and then is introduced into the working cylinder. Under operating in different working conditions, the engine can discharge the mixed gas with different activities under different oxidation stages by regulating the corresponding boundary conditions of the reforming reaction of the reforming cylinder, and can achieve concentration stratification and activity stratification of the mixed gas in the working cylinder by using the fuel injected from the working cylinder injectors, and can effectively achieve high effectiveness and broaden the scope of clean combustion by changing the combustion reaction path. The present invention just adopts simple oxidation reaction post-treatment device, and then the emission of the engine can meet the requirement of EuroVI emission regulation.
Abstract:
A system includes an internal combustion engine having a number of cylinders, with at least one of the cylinders plumbed to have a complete recycle of the exhaust gases from the cylinder. The system further includes the completely recycled cylinder having an EGR stroke cycle, and the non-recycled cylinders of the engine having an exhaust stroke cycle. The system includes the EGR stroke cycle being distinct from the exhaust stroke cycle. An amount and composition of the exhaust gases from the recycled cylinder are distinct from the amount and composition of the exhaust gases from the non-recycled cylinders, at least at certain operating conditions of the engine.
Abstract:
A method and apparatus for the oxy-combustion of fuel in an internal combustion engine (ICE) used to power a vehicle includes one or more air separation devices that separate oxygen from the atmospheric air to mix with the fuel and return the nitrogen to the atmosphere and converts the free energy available in the form of waste heat from the engine exhaust gas stream and coolant system on board the vehicle into electrical and/or mechanical energy, which energy is used to separate oxygen from air to eliminate or significantly reduce the volume of nitrogen entering the ICE's combustion chamber, and thereby reduce NOx pollutants released into the atmosphere and increase the concentration of CO2 in the engine exhaust stream for capture using an integrated system to compress and increase the density of the captured CO2 for temporary on-board storage until it is discharged at a recovery station, e.g., during vehicle refueling.
Abstract:
Disclosed is a controller for a turbocharged engine. The engine includes a supercharger configured to supercharge intake air using an exhaust gas from the engine, and including movable flaps arranged so that a boost pressure generated in an intake passage is adjustable. If a rotational speed of a turbine and compressor that constitute the supercharger has reached a first threshold lower than an endurance limit, an amount of fuel injected to the engine is reduced to a predetermined amount. If the rotational speed has reached a second threshold lower than the first threshold, the amount of fuel injected is reduced in accordance with an excess of the rotational speed over the second threshold.
Abstract:
A system may include an engine, an exhaust passage, a carbon dioxide capture system, and a dosing valve. The engine includes a combustion chamber. The exhaust passage receives exhaust gas from the engine. The carbon dioxide capture system receives exhaust gas from the exhaust passage and may include a separation device, a pump and a first tank. The separation device removes carbon dioxide from the exhaust gas. The pump pumps the removed carbon dioxide to the first tank. A second tank may receive and store carbon dioxide from the first tank. The dosing valve may be in fluid communication with and disposed downstream of the second tank. The dosing valve may regulate a flow of carbon dioxide from the second tank to the engine.
Abstract:
A particulate matter sensor and an exhaust gas purification system using the same are provided. A particular matter sensor according to some embodiments of the present invention includes a first insulation layer including a first electrode unit exposed on a first side thereof, which includes a plurality of first electrodes not electrically connected to each other, a second insulation layer arranged in parallel to the first insulation layer with a space therebetween, including a second electrode unit on a first side thereof, which includes a plurality of second electrodes electrically connected to each other, a temperature sensing unit formed on a first side of a third insulation layer located on a second side of the second insulation layer, and a heater unit formed on a first side of a fourth insulation layer located on a second side of the third insulation layer, the heater unit configured to heat the first and second electrode units. One of the first electrodes is configured to be electrically connected to a first electrical contact terminal. The second electrodes are electrically connected to a second electrical contact terminal. The first electrodes and the second electrodes are arranged respectively corresponding to each other. The first electrodes are configured to be electrically connected to each other by particulates deposited therebetween to allow capacitance between the first electrode and the second electrode to be changed.