Abstract:
A panel display using gold as a conductive element and a matrix of carbon fibers as emitters is presented. The invention provides a novel defined pixel width of three emitter fibers per cell wherein each cell is positioned within three emulsion layers of suspended nano-crystals stack positioned vertically atop one-another. Each of these respective layers is excited by a single carbon fiber. In the preferred embodiment, fiber length ends from each cell are positioned at the mid-point of each respective polymer layer thickness and produce one of red, green, or blue colors required to complete the image formation.
Abstract:
A phosphor paste is applied to inner surfaces of a cell. Then, a conveyer moves a substrate relative to a CCD camera at a constant speed. Simultaneously, two LEDs radiate visible light onto a portion, to be inspected, of the substrate. The visible light is light configured to have a wavelength so as to be able to prevent the phosphor of the phosphor paste from being excited and emitting light and reflected by a liquid surface of the phosphor paste to produce reflected light. Thereafter, the CCD camera captures an image of the phosphor paste and a data processor processes the received image data, and determines whether a phosphor layer formed by drying the phosphor paste will normally be formed, prior to formation of phosphor layer.
Abstract:
An ultraviolet light-generating target comprising a substrate transmitting ultraviolet light; and a light-emitting layer provided on the substrate and emitting ultraviolet light in response to an electron beam, wherein the light-emitting layer is an amorphous layer formed of Al2O3 doped with Sc.
Abstract:
The invention relates to co-activated magnesium alumosilicate based phosphors, to a process of its preparation, the use of these phosphors in electronic and electro optical devices, such as light emitting diodes (LEDs) and solar cells and especially to illumination units comprising said magnesium alumosilicate-based phosphors.
Abstract:
A light-emitting device includes a light-emitting element for emitting primary light, and a wavelength conversion unit for absorbing part of the primary light and emitting secondary light having a wavelength longer than that of the primary light, wherein the wavelength conversion unit includes plural kinds of phosphors having light absorption characteristics different from each other, and then at least one kind of phosphor among the plural kinds of phosphors has an absorption characteristic that can absorb the secondary light emitted from at least another kind of phosphor among the plural kinds of phosphors.
Abstract:
A lighting device (100) includes a housing (104) enclosing a housing interior (108), a light source (132), a light converter (136), and a color tuning device. The light source is configured for emitting a primary light beam of a primary wavelength (140) through the housing interior. The light converter includes a luminescent material (144) facing the housing interior and configured for emitting secondary light (156, 158) of one or more wavelengths different from the primary wavelength, in response to excitation by the primary light beam. The housing includes a light exit (124) for outputting a combination of primary light and secondary light. The color tuning device is configured for adjusting a position of the primary light beam relative to the luminescent material.
Abstract:
Provided is a chemically and thermally stable phosphor having different emission characteristics than the conventional phosphor and exhibiting high emission intensity if combined with an LED of 470 nm or less. The phosphor of the present invention is represented by a composition formula: MdAeDfEgXh (d+e+f+g+h=1; M is one or more kinds of elements selected from Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, and Yb; A is one or more kinds of elements selected from Mg, Ca, Sr, and Ba; D is one or more kinds of elements selected from Si, Ge, Sn, Ti, Zr, and Hf; E is one or more kinds of elements selected from B, Al, Ga, In, Sc, Y, and La; and X is one or more kinds of elements selected from O, N, and F) and parameters d, e, f, g, and h satisfy the predetermined condition.
Abstract translation:提供了一种化学和热稳定的荧光体,其具有与常规荧光体不同的发射特性,并且如果与470nm或更小的LED组合,则表现出高发射强度。 本发明的荧光体由以下组成式表示:MdAeDfEgXh(d + e + f + g + h = 1; M是选自Mn,Ce,Pr,Nd,Sm,Eu,Tb中的一种或多种元素 ,Dy和Yb; A是选自Mg,Ca,Sr和Ba中的一种或多种元素; D是选自Si,Ge,Sn,Ti,Zr和Hf中的一种或多种元素; E是 选自B,Al,Ga,In,Sc,Y和La中的一种或多种元素; X是选自O,N和F中的一种或多种元素),参数d,e,f,g ,并满足预定条件。
Abstract:
Provided are method and apparatus for writing and reproducing a multimedia service using a tag in order to provide an intuitive interface for a user using a multimedia service. The method includes selecting a multimedia service to be written; generating tag information identifying the selected multimedia service; and writing the generated tag information to a tag. Accordingly, multimedia service information and content information can be stored in a tag by being written to tag information using a common format, and thus the user can later execute a service operation by easily writing information of a desired service operation to a tag and then simply connecting the tag to a tag reading device.
Abstract:
A stack of layers 100, a lamp, a luminaire and a method of manufacturing a stack of layers is disclosed. The stack of layers 100 comprises a first outer layer 102, a second outer layer 106 and a luminescent layer 104. The first outer layer 102 and the second outer layer 106 are of a light transmitting polymeric material and have an oxygen transmission rate lower than 30 cm3/(m2-day) measured under standard temperature and pressure (STP). The luminescent layer 104 is sandwiched between the first outer layer 102 and the second outer layer 106 and comprises a light transmitting matrix polymer and a luminescent material 108 being configured to absorb light according to an absorption spectrum and convert a portion of the absorbed light towards light of a light emission spectrum.