Abstract:
The present invention relates to a touch panel and a manufacturing method thereof. The method comprises steps of providing a base having a substrate, a buffering layer and a transparent conductive layer, forming multiple first pad strings, multiple second pads and an isolated pad by etching the transparent conductive layer, forming a shading layer on the isolated pad and then sequentially forming insulating layers, wire bridges, signal wires and cover pieces to complete the touch panel. The method of the invention is simplified, such that the production capacity is increased. The step of forming the shading layer is after the step of forming the first pad strings and the second pads, such that the shading layer would not be charred in the step of forming first pad strings and the second pads.
Abstract:
A touch panel includes an insulative substrate, a first adhesive layer, a first transparent conductive layer, a second adhesive layer, a second transparent conductive layer, a number of first electrodes, a first conductive trace, a number of second electrode, and a second conductive trace. The insulative substrate, the first adhesive layer, the first transparent conductive layer, the second adhesive layer, and the second transparent conductive layer are stacked with each other in that order. The first transparent conductive layer and the second transparent conductive layer are electrically insulated from each other only by the second adhesive layer. The second adhesive layer only covers part of the first transparent conductive layer so that the first transparent conductive layer has at least part exposed. A method for making the touch panel is also related.
Abstract:
A method for forming a transparent electrode includes a step of forming a thin metal wire on a transparent substrate; and a step of forming a transparent conductive layer on the transparent substrate and the thin metal wire. The step of forming the transparent conductive layer is a step of forming the transparent conductive layer by applying an application liquid onto the transparent substrate and the thin metal wire by printing. The application liquid is composed of a conductive polymer, a water-soluble binder having a structural unit represented by the following general formula (I), a polar solvent having a log P value of −1.50 to −0.45, and 5.0 to 25 mass % of a glycol ether.
Abstract:
A method is proposed for coating an optoelectronic chip-on-board module including a flat substrate populated with one or more optoelectronic components having at least one primary optical arrangement and optionally at least one secondary optical arrangement. The optoelectronic chip-on-board module is coated with a transparent, UV-resistant, and temperature-resistant coating made of silicone by the following steps: (a) casting a liquid silicone into a mold open towards the top and having outer dimensions corresponding to or exceeding outer dimensions of the substrate; (b) inserting the substrate into the mold, wherein the optoelectronic component(s) are immersed completely into the silicone and a surface of the substrate contacts the silicone completely or the substrate immerses into the silicone at least partially with full surface contact; (c) curing and cross-linking the silicone with the optoelectronic component(s) and the substrate; and (d) removing the substrate from the mold with the coating of cured silicone.
Abstract:
A micro-wire electrode includes a substrate and an anisotropically conductive electrode extending in a length direction formed over the substrate. The electrode includes a plurality of electrically connected micro-wires formed in a micro-pattern over the substrate. The micro-pattern includes a plurality of substantially parallel and straight micro-wires extending substantially in the length direction and a plurality of angled micro-wires formed at a non-orthogonal angle to the straight micro-wires electrically connecting the straight micro-wires so that the anisotropically conductive electrode has a greater electrical conductivity in the length direction than in another conductive electrode direction.
Abstract:
A method for manufacturing of a conductive member include forming one of a conductive layer including metal nanowires or a light-scattering layer including insulating light-scattering fine particles on a substrate in a pattern shape; and forming the other of the conductive layer including metal nanowires or the light-scattering layer including insulating light-scattering fine particles on a space of the substrate wherein the one of the conductive layer or the light-scattering layer is not formed.
Abstract:
A touch panel defines a touch region and a routing region. The touch panel includes a substrate, a transparent conductive layer, at least one electrode and at least one lead wire. The substrate has a surface and includes a planar part and a folded part extending from the planar part. The transparent conductive layer is located on the surface of the substrate. At least a first part of the transparent conductive layer is located on the planar part and located in the touch region. The at least one electrode is electrically connected to the conductive layer. The at least one lead wire is electrically connected to the at least one electrode in a one-to-one manner. At least part of the at least one lead wire is located on the folded part. The folded part is located in at least part of the routing region.
Abstract:
A transparent conductive film includes: a transparent substrate, a conduction line, a first conductive layer, a first matrix layer, and a second conductive layer. The transparent substrate includes a body and a flexible board, and the body includes a sensing area and a border area; the first conductive layer is disposed on a side of the sensing area; the first matrix layer is disposed on the surface of the first conductive layer, and the second conductive layer is embedded in the first matrix layer; a first electrode trace disposed on a side of the border area, via which the first conductive layer and the conduction line are electrically connected; and a second electrode trace disposed on a side of the first matrix layer, via which the second conductive layer and the conduction line are electrically connected. The production efficiency of the above transparent conductive film is improved.
Abstract:
The method for forming a protective coat on an electrode for a touch panel according to the invention comprises a first step in which a photosensitive layer comprising a photosensitive resin composition containing a binder polymer, a photopolymerizable compound and a photopolymerization initiator is provided on a base material having an electrode for a touch panel, a second step in which prescribed sections of the photosensitive layer are cured by irradiation with active light rays, and a third step in which the sections other than the prescribed sections of the photosensitive layer are removed to form a protective coat comprising the cured sections of the photosensitive layer covering all or a portion of the electrode, wherein the hydroxyl value of the photosensitive resin composition is no greater than 40 mgKOH/g.
Abstract:
Disclosed herein are laser scanning systems and methods of their use. In some embodiments, laser scanning systems can be used to ablatively or non-ablatively scan a surface of a material. Some embodiments include methods of scanning a multi-layer structure. Some embodiments include translating a focus-adjust optical system so as to vary laser beam diameter. Some embodiments make use of a 20-bit laser scanning system.