摘要:
Solid material gasification method comprises a solution preparation step wherein a first solid material is dissolved in a solvent to prepare a gasification solution, a solvent removal step wherein a second solid material is separated by removing the solvent used to prepare the gasification solution from that solution, and a solid sublimation step wherein the second solid material is gasified by sublimation.
摘要:
Solid material gasification method comprises a solution preparation step wherein a first solid material is dissolved in a solvent to prepare a gasification solution, a solvent removal step wherein a second solid material is separated by removing the solvent used to prepare the gasification solution from that solution, and a solid sublimation step wherein the second solid material is gasified by sublimation.
摘要:
A manufacturing method for a ferroelectric memory device including: forming a lower electrode; forming an electrode oxide film composed of an oxide of a constituent material of the lower electrode; forming a first ferroelectric layer on the lower electrode by reaction between organometallic source material gas and oxygen gas; forming a second ferroelectric layer on the first ferroelectric layer by reaction between organometallic source material gas and oxygen gas; and forming an upper electrode on the second ferroelectric layer. In the method, the oxygen gas in the forming of the first ferroelectric layer is in an amount less than the amount of oxygen necessary for reaction of the organometallic source material gas. In the method, the oxygen gas in the forming of the second ferroelectric layer is in an amount greater than the amount of oxygen necessary for reaction of the organometallic source material gas.
摘要:
A thin film multilayer body is disclosed that includes a single crystal substrate of silicon or gallium arsenide; an intermediate layer of magnesia spinel formed on the single crystal substrate by epitaxial growth; and a conductive layer of a platinum-group element formed on the intermediate layer by epitaxial growth. An oxide layer is to be epitaxially grown on the conductive layer, the oxide layer having a crystalline structure having a simple perovskite lattice.
摘要:
A method of forming a ferroelectric film includes the steps of forming a layer by a material that takes a metal state in a reducing ambient and an oxide state in an oxidizing ambient, and depositing a ferroelectric film on a surface of the layer by supplying gaseous sources of the ferroelectric film and an oxidizing gas and causing a decomposition of the gaseous sources at the surface of said layer, wherein the step of depositing the ferroelectric film is started with a preparation step in which the state of the surface of said layer is controlled substantially to a critical point in which the layer changes from the metal state to the oxide state and from the oxide state to the metal state.
摘要:
A manufacturing method for a ferroelectric memory device including: forming a lower electrode; forming an electrode oxide film composed of an oxide of a constituent material of the lower electrode; forming a first ferroelectric layer on the lower electrode by reaction between organometallic source material gas and oxygen gas; forming a second ferroelectric layer on the first ferroelectric layer by reaction between organometallic source material gas and oxygen gas; and forming an upper electrode on the second ferroelectric layer. In the method, the oxygen gas in the forming of the first ferroelectric layer is in an amount less than the amount of oxygen necessary for reaction of the organometallic source material gas. In the method, the oxygen gas in the forming of the second ferroelectric layer is in an amount greater than the amount of oxygen necessary for reaction of the organometallic source material gas.
摘要:
A device having a capacitor element includes: an underlying body having a non-orientated first surface; a lower electrode formed on the first surface of the underlying body, the lower electrode containing conductive metal oxide and not containing noble metal, such as LaNiO3, the conductive metal oxide having a (0 0 1) orientated ABO3 type pervskite structure; a ferroelectric layer formed on the lower electrode, having a rhombohedral ABO3 type pervskite structure, the ferroelectric layer being preferentially (0 0 1) orientated in conformity with the orientation of the lower electrode, and an upper electrode formed on the ferroelectric layer.
摘要:
A disclosed optical deflection element includes a magnesia spinel film 22, a lower electrode 23, a lower cladding layer 24, a core layer 25, and an upper cladding layer 26, which are sequentially stacked formed on a silicon single crystal substrate 21. The magnesia spinel film 22, the lower electrode 23, a PLZT film acting as the lower cladding layer 24, and a PZT film acting as the core layer 25 are epitaxially grown on respective underlying layers thereof. Because of a voltage applied between the lower electrode 23 and the upper electrode 26, refractive index variable regions 25A, 24A, in which the refractive index varies, are formed due to the electro-optical effect. Light incident into the core layer 25 is deflected at the interface between the core layer 25 and the refractive index variable regions 25A, 24A to the inner side relative to the surface of the core layer 25.
摘要:
The present invention provides a semiconductor device comprising a single-crystal silicon substrate; and a single-crystal oxide thin film having a perovskite structure formed through epitaxial growth on the single-crystal silicon substrate. The single-crystal oxide thin film is directly in contact with a surface of the single-crystal silicon substrate, and contains a bivalent metal that is reactive to silicon.
摘要:
Process for the production of semiconductor devices by using silicon-on-insulator (SOI) techniques. The Si layers of the SOI structure include an interfacial layer of Si and a buffer layer of Si formed thereon, whereby the formation of stacking faults in the Si layers can be effectively prevented. Pretreatment of the underlying insulating material with a molybdate solution and interposition of an additional layer of slowly grown single-crystalline Si between the buffer layer of Si and the overlying active Si layer are also effective to inhibit the stacking faults. Semiconductor devices with high quality can be produced with good yield.