摘要:
A semiconductor power device disposed on a semiconductor substrate comprises a plurality of trenches formed at a top portion of the semiconductor substrate extending laterally across the semiconductor substrate along a longitudinal direction each having a nonlinear portion comprising a sidewall perpendicular to a longitudinal direction of the trench and extends vertically downward from a top surface to a trench bottom surface. The semiconductor power device further includes a trench bottom dopant region disposed below the trench bottom surface and a sidewall dopant region disposed along the perpendicular sidewall wherein the sidewall dopant region extends vertically downward along the perpendicular sidewall of the trench to reach the trench bottom dopant region and pick-up the trench bottom dopant region to the top surface of the semiconductor substrate.
摘要:
This invention discloses a method for manufacturing a semiconductor power device on a semiconductor substrate supporting a . drift region composed of an epitaxial layer. The method includes a first step of growing a first epitaxial layer followed by forming a first hard mask layer on top of the epitaxial layer; a second step of applying a first implant mask to open a plurality of implant windows and applying a second implant mask for blocking some of the implant windows to implant a plurality of dopant regions of alternating conductivity types adjacent to each other in the first epitaxial layer; and a third step of repeating the first step and the second step by applying the same first and second implant masks to form a plurality of epitaxial layers, each of which is implanted with the dopant regions of the alternating conductivity types. Then the manufacturing processes proceed by carrying out a device manufacturing process on a top side of the epitaxial layer on top of the dopant regions of the alternating conductivity types with a diffusion process to merge the dopant regions of the alternating conductivity types as doped columns in the epitaxial layers.
摘要:
A directional solidification furnace includes a crucible for holding molten silicon and a lid covering the crucible and forming an enclosure over the molten silicon. The crucible also includes an inlet in the lid for introducing inert gas above the molten silicon to inhibit contamination of the molten silicon.
摘要:
This invention discloses configurations and methods to manufacture lateral power device including a super-junction structure with an avalanche clamp diode formed between the drain and the gate. The lateral super-junction structure reduces on-resistance, while the structural enhancements, including an avalanche clamping diode and an N buffer region, increase the breakdown voltage between substrate and drain and improve unclamped inductive switching (UIS) performance.
摘要:
Aspects of the present disclosure describe a high density trench-based power MOSFET with self-aligned source contacts. The source contacts are self-aligned with a first insulative spacer and a second insulative spacer, wherein the first spacer is resistant to an etching process that will selectively remove the material the second spacer is made from. Additionally, the active devices may have a two-step gate oxide, wherein a lower portion of the gate oxide has a thickness T2 that is larger than the thickness T1 of an upper portion of the gate oxide. It is emphasized that this abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
摘要:
A semiconductor device includes a semiconductor material disposed in a trench with polysilicon lining at least the bottom of the trench. The semiconductor material includes differently doped regions configured as a PNP or NPN structure formed in the trench with differently doped regions located side by side across a width of the trench. It is emphasized that this abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
摘要:
A semiconductor device includes a substrate, an active gate trench in the substrate, the active gate trench has a first top gate electrode and a first bottom source electrode, and a gate runner trench comprising a second top gate electrode and a second bottom source electrode. The second top gate electrode is narrower than the second bottom source electrode.
摘要:
A method for fabricating a semiconductor device includes forming a plurality of trenches using a first mask. The trenches include source pickup trenches located in outside a termination area and between two adjacent active areas. First and second conductive regions separated by an intermediate dielectric region are formed using a second mask. A first electrical contact to the first conductive region and a second electrical contact to the second conductive region are formed using a third mask and forming a source metal region. Contacts to a gate metal region are formed using a fourth mask. A semiconductor device includes a source pickup contact located outside a termination region and outside an active region of the device.
摘要:
Self-aligned charge balanced semiconductor devices and methods for forming such devices are disclosed. One or more planar gates are formed over a semiconductor substrate of a first conductivity type. One or more deep trenches are etched in the semiconductor self-aligned to the planar gates. The trenches are filled with a semiconductor material of a second conductivity type such that the deep trenches are charge balanced with the adjacent regions of the semiconductor substrate This process can form self-aligned charge balanced devices with a cell pitch less than 12 microns.
摘要:
A power MOSFET device and manufacturing method thereof, includes the steps of selectively depositing a first conductive material in the middle region at the bottom of a contact trench and contacting with light-doped N-type epitaxial layer to form a Schottky junction and depositing a second conductive material at the side wall and bottom corner of the contact trench and contacting with P-type heavy-doped body region to form an ohmic junction. The first and second conductive materials can respectively optimize the performance of the ohmic contact and the Schottky contact without compromise. Meanwhile, the corner of the contact trench is surrounded by P-type heavy-doped region thereby effectively reducing the leakage currents accumulated at the corner of the contact trench.