摘要:
Mixer circuitry having a semiconductor body formed therein mixer circuitry having an oscillator having a heterojunction bipolar transistor and a mixer having a Schottky diode. The heterojunction transistor has a collector region formed in one portion of doped layer of the semiconductor body and the diode has a metal electrode is Schottky contact with another portion of such doped layer. The mixer is includes a diode and a DC biasing circuit, comprising a constant current, for biasing such diode to predetermined operating point substantially invariant with power of an input signal fed to such mixer.
摘要:
A method for obtaining a very low resistance ohmic contact on p-type Indiumhosphide (InP) by light-assisted plating of Au and Zn. The plating technique, which uses alternating positive and negative current pulses, has been used for producing patterned, small area contacts on device structures and is compatible with established n-type ohmic contacting procedures.
摘要:
According to one embodiment of the disclosure, a method for passivating a circuit device generally includes providing a substrate having a substrate surface, forming an electrical component on the substrate surface, and coating the substrate surface and the electrical component with a first protective dielectric layer. The first protective dielectric layer is made of a generally moisture insoluble material having a moisture permeability less than 0.01 gram/meter2/day, a moisture absorption less than 0.04 percent, a dielectric constant less than 10, a dielectric loss less than 0.005, a breakdown voltage strength greater than 8 million volts/centimeter, a sheet resistivity greater than 1015 ohm-centimeter, and a defect density less than 0.5/centimeter2.
摘要:
According to one embodiment of the disclosure, a method for passivating a circuit device generally includes providing a substrate having a substrate surface, forming an electrical component on the substrate surface, and coating the substrate surface and the electrical component with a first protective dielectric layer. The first protective dielectric layer is made of a generally moisture insoluble material having a moisture permeability less than 0.01 gram/meter2/day, a moisture absorption less than 0.04 percent, a dielectric constant less than 10, a dielectric loss less than 0.005, a breakdown voltage strength greater than 8 million volts/centimeter, a sheet resistivity greater than 1015 ohm-centimeter, and a defect density less than 0.5/centimeter2.
摘要:
A bipolar transistor having a pair of transistor cells formed on a single crystal substrate. Each one of the cells including a collector electrode, an elongated emitter electrode and a base electrode disposed over a first surface of the substrate. The base electrode is adapted to control a flow of carriers between the collector and emitter electrodes. An emitter pad is disposed over the first surface of the substrate. A pair of conductive, air-bridge members is provided. First ends of the bridge members are connected to the emitter pad and second ends of the bridge members are connected along a length of the elongated emitter electrode. The substrate has an emitter contact disposed on a second surface of the substrate. The emitter pad and the emitter contact are electrically connected by an electrically conductive via passing through the substrate between the first and second surfaces of the substrate. The emitter pad comprises a resistive layer disposed serially between the pair of bridges and the emitter contact. The emitter pad includes: a resistive layer disposed over the first surface of the substrate and having an inner portion in electrical contact with the electrically conductive via; a dielectric layer disposed over an inner region of the resistive layer; and a pair of electrical contacts, an outer portion of each of the electrical contacts being disposed in electrical contact with outer portions of the resistive layer and inner portions of the pair of electrical contacts being electrically insulated from the resistive layer.
摘要:
A transmit/receive module including digitally controlled analog circuits is described. The digital circuits use a logic family adapted for use with analog monolithic integrated circuits. The disclosure also describes a preferred process to provide digital and analog microwave circuits on a common semiconductor substrate.
摘要:
According to one embodiment of the disclosure, a method for passivating a circuit device generally includes providing a substrate having a substrate surface, forming an electrical component on the substrate surface, and coating the substrate surface and the electrical component with a first protective dielectric layer. The first protective dielectric layer is made of a generally moisture insoluble material having a moisture permeability less than 0.01 gram/meter2/day, a moisture absorption less than 0.04 percent, a dielectric constant less than 10, a dielectric loss less than 0.005, a breakdown voltage strength greater than 8 million volts/centimeter, a sheet resistivity greater than 1015 ohm-centimeter, and a defect density less than 0.5/centimeter2.
摘要:
According to one embodiment of the disclosure, a method for passivating a circuit device generally includes providing a substrate having a substrate surface, forming an electrical component on the substrate surface, and coating the substrate surface and the electrical component with a first protective dielectric layer. The first protective dielectric layer is made of a generally moisture insoluble material having a moisture permeability less than 0.01 gram/meter2/day, a moisture absorption less than 0.04 percent, a dielectric constant less than 10, a dielectric loss less than 0.005, a breakdown voltage strength greater than 8 million volts/centimeter, a sheet resistivity greater than 1015 ohm-centimeter, and a defect density less than 0.5/centimeter2.
摘要:
A method for Ion implantation using multiple energy Be.sup.+ to produce p-type regions in n-In.sub.0.53 Ga.sub.0.47 As. A simple technique is used to develop capless annealing of InGaAs up to 700.degree. C. The ion implantation of silicon is then accomplished to create n.sup.+ layers in previously Be-implanted InGaAs epilayers. The active efficiency of 40% for 50 KeV Be implant has been found and efficiencies of 86% and 38% are found for the low and high energy Si implants respectively.