Abstract:
Horizontal light emitting diodes include anode and cathode contacts on the same face and a transparent substrate having an oblique sidewall. A conformal phosphor layer having an average equivalent particle diameter d50 of at least about 10 μm is provided on the oblique sidewall. High aspect ratio substrates may be provided. The LED may be directly attached to a submount.
Abstract:
Light emitter devices with improved light extraction and related methods are disclosed. In one embodiment, the light emitter device can include a submount, at least one light emitting chip disposed over the submount, and a lens disposed over the light emitting chip. The lens can include a lens base that can have substantially the same geometry as a geometry of the submount.
Abstract:
Horizontal light emitting diodes include anode and cathode contacts on the same face and a transparent substrate having an oblique sidewall. A conformal phosphor layer having an average equivalent particle diameter d50 of at least about 10 μm is provided on the oblique sidewall. High aspect ratio substrates may be provided. The LED may be directly attached to a submount.
Abstract:
Light emitter packages, systems, and methods having improved performance are disclosed. In one aspect, a light emitter package can include a submount that can include an anode and a cathode. A light emitter chip can be disposed over the submount such that the light emitter chip is mounted over at least a portion of the cathode and wirebonded to at least a portion of the anode.
Abstract:
Light emitter devices with improved light extraction and related methods are disclosed. In one embodiment, the light emitter device can include a submount, at least one light emitting chip disposed over the submount, and a lens disposed over the light emitting chip. The lens can include a lens base that can have substantially the same geometry as a geometry of the submount.
Abstract:
High density multi-chip LED devices are described. Embodiments of the present invention provide high-density, multi-chip LED devices with relatively high efficiency and light output in a compact size. An LED device includes a plurality of interconnected LED chips and an optical element such as a lens. The LED chips may be arranged in two groups, wherein the LED chips within each group are connected in parallel and the groups are connected in series. In some embodiments, the LED device includes a submount, which may be made of ceramic. The submount may include a connection bus and semicircular areas to which chips are bonded. Wire bonds can be connected to the LED chips so that all the wire bonds are disposed on the outside of a group of LED chips to minimize light absorption.
Abstract:
Light emitter devices and methods with reduced dimensions and improved light output are provided. In one embodiment, a light emitter device includes a submount having an area of approximately 6 square millimeters (mm2) or less. The device can further include a light emitting chip on the submount and a lens disposed over the light emitting chip and positioned on the submount. The device can be operable for emitting light at approximately 100 lumens or higher.
Abstract:
Light emitter packages, systems, and methods having improved performance are disclosed. In one aspect, a light emitter package can include a submount that can include an anode and a cathode. A light emitter chip can be disposed over the submount such that the light emitter chip is mounted over at least a portion of the cathode and wirebonded to at least a portion of the anode.
Abstract:
A horizontal LED die is flip-chip mounted on a mounting substrate to define a gap that extends between the closely spaced apart anode and cathode contacts of the LED die, and between the closely spaced apart anode and cathode pads of the substrate. An encapsulant is provided on the light emitting diode die and the mounting substrate. The gap is configured to prevent sufficient encapsulant from entering the gap that would degrade operation of the LED.