Abstract:
A method of coating a metallic article having an at least part-metallic surface comprising a first metal, with a surface having a pre-determined wettability, the method at least comprising the steps of: (a) coating at least a part of the metallic article with a layer of a second metal to provide a metal-metal bonded surface, said surface being rough either prior to or because of step (a); and (b) contacting the metal-metal bonded surface of step (a) with a material to provide the surface having the pre-determined wettability. The first metal may be one or more of the group comprising: iron, zinc, copper, tin, nickel and aluminum, and alloys thereof including steel, brass, bronze and nitinol for example. Preferably, the second metal is coated onto the first metal using electroless Galvanic deposition. The nature of the coated metallic article is non-limiting, as the ability of the present invention is to provide a tailored surface with a pre-determined wettability thereon, including superhydrophobic and superhydrophilic wettability. This allows the invention to be capable of application to a wide range of metal types used in different fields.
Abstract:
An electrode configured to provide electrical contact with a subject's skin and includes a conductive layer and a gel layer. The conductive layer spreads current and transmits electrical signals to and/or receives electrical signals from the subject's skin and has a first conductive surface through which electrical signals are transmitted to and/or received from the subject's skin. The first conductive surface is on a side of the conductive layer that faces toward the subject's skin if the electrode is installed on the subject. The gel layer is formed on the same side of the conductive layer as the first conductive surface. The gel layer has a first interface surface that directly contacts the subject's skin if the electrode is installed on the subject, and to conduct electrical signals between the subject's skin and the first conductive surface. The first interface surface has a surface area larger than that of the first conductive surface.
Abstract:
A lost motion engine valve actuation system and method of actuating an engine valve are disclosed. The system may comprise a valve train element, a pivoting lever, a control piston, and a hydraulic circuit. The pivoting lever may include a first end for contacting the control piston, a second end for transmitting motion to a valve stem and a means for contacting a valve train element. The amount of lost motion provided by the system may be selected by varying the position of the control piston relative to the pivoting lever. Variation of the control piston position may be carried out by placing the control piston in hydraulic communication with a control trigger valve and one or more accumulators. Actuation of the trigger valve releases hydraulic fluid allowing for adjustment of the control piston position. Means for limiting valve seating velocity, filling the hydraulic circuit upon engine start up, and mechanically locking the control piston/lever for a fixed level of valve actuation are also disclosed.
Abstract:
A method for dynamic electrical testing of head gimbal assemblies may include initiating an automated continuous process that includes selecting an unmounted head gimbal assembly; aligning the unmounted head gimbal assembly; loading the unmounted head gimbal assembly to a disc; and testing the unmounted head gimbal assembly.
Abstract:
A method of forming a solid matrix for use with surface-enhanced Raman spectroscopy is described. The method comprises the steps of: admixing a colloidal metal solution with a polymeric support medium to form a suspension; optionally depositing said suspension on a surface; and then drying the suspension to form the matrix. The polymeric support medium provides a plymer/sol suspension in which the sol particles are resistant to aggregation and precipitation. Upon drying the suspension shrinks to provide a mechanically-hard film subsequently usable to provide a sample for spectroscopic analysis.
Abstract:
A lost motion engine valve actuation system and method of actuating an engine valve are disclosed. The system may comprise a valve train element, a pivoting lever, a control piston, and a hydraulic circuit. The pivoting lever may include a first end for contacting the control piston, a second end for transmitting motion to a valve stem and a means for contacting a valve train element. The amount of lost motion provided by the system may be selected by varying the position of the control piston relative to the pivoting lever. Variation of the control piston position may be carried out by placing the control piston in hydraulic communication with a control trigger valve and one or more accumulators. Actuation of the trigger valve releases hydraulic fluid allowing for adjustment of the control piston position. Means for limiting valve seating velocity, filling the hydraulic circuit upon engine start up, and mechanically locking the control piston/lever for a fixed level of valve actuation are also disclosed.
Abstract:
Lost motion systems and methods for providing engine valves with variable valve actuation for engine valve events are disclosed. The system may include a master piston hydraulically linked to a slave piston, and a dedicated cam operatively connected to the master piston. The slave piston may be disposed substantially perpendicular to the master piston in a common housing. The slave piston is adapted to actuate one or more engine valves. The slave piston may incorporate an optional valve seating assembly into its upper end. A trigger valve may be operatively connected to the master-slave hydraulic circuit to selectively release and add hydraulic fluid to the circuit.
Abstract:
Systems and methods for implementing a dynamic broadcast campaign and/or an interactive broadcast campaign are provided, in which an interactive program is broadcast to an audience and in which members of the audience may interact with media content of the interactive program and/or in which a dynamic program is broadcast to a segment of the audience. The systems and methods utilize a platform that facilitates the creation, execution, and monitoring of a dynamic broadcast campaign and/or an interactive broadcast campaign, as well as one or more interactive and/or dynamic programs within the campaign. Each interactive program enables audience members to interact or send messages to the program, such that the messages are received and processed by the program itself or received by the program and processed by the broadcaster that aired the program.