Abstract:
A laser focusing system (330) for use in an EUV radiation source is described, the laser focusing system comprising: •—a first curved mirror (330.1) configured to receive a laser beam from a beam delivery system (320) and generate a first reflected laser beam (316); •—a second curved mirror (330.2) configured to receive the first reflected laser beam (316) and generate a second reflected laser beam (317), wherein the laser focusing system (330) is configured to focus the second reflected laser beam (317) to a target location (340) in a vessel (350) of the EUV radiation source (360).
Abstract:
An exposure apparatus including a projection system configured to project a plurality of radiation beams onto a target; a movable frame that is at least rotatable around an axis; and an actuator system configured to displace the movable frame to an axis away from an axis corresponding to the geometric center of the movable frame and to cause the frame to rotate around an axis through the center of mass of the frame.
Abstract:
There is provided a positioning system for positioning an object in a lithographic apparatus. The positioning system includes a support, a position measurement device, a deformation sensor and a processor. The support is constructed to hold the object. The position measurement device is configured to measure a position of the support. The position measurement device includes at least one position sensor target and a plurality of position sensors to cooperate with the at least one position sensor target to provide a redundant set of position signals representing the position of the support. The deformation sensor is arranged to provide a deformation signal representing a deformation of one of the support and the position measurement device. The processor is configured to calibrate one of the position measurement device and the deformation sensor based on the deformation signal and the redundant set of position signals.
Abstract:
A radiation collector comprising a first collector segment comprising a plurality of grazing incidence reflector shells configured to direct radiation to converge in a first location at a distance from the radiation collector, a second collector segment comprising a plurality of grazing incidence reflector shells configured to direct radiation to converge in a second location at said distance from the radiation collector, wherein the first location and the second location are separated from one another.
Abstract:
A sensor includes two shear-mode piezoelectric transducers, wherein each piezoelectric transducer has a bottom surface and a top surface, wherein the top surfaces of the piezoelectric transducers are rigidly connected to each other, and wherein the bottom surfaces of the piezoelectric transducers are configured to be attached to an object to be measured.
Abstract:
A lithographic apparatus including a moveable object (WT) and a displacement measuring system arranged to determine a position quantity of the moveable object. The displacement measuring system includes an encoder (BC) and a grid structure. One of the encoder and the grid structure is connected to the moveable object. The grid structure includes a high precision grid portion (HG) and a low precision grid portion (LG). The encoder is arranged to cooperate with the high precision grid portion to determine the position quantity relative to the grid structure with a high precision. The encoder is arranged to cooperate with the low precision grid portion to determine the position quantity relative to the grid structure with a low precision.
Abstract:
A displacement measurement system comprising at least one retro reflector and a diffraction grating. Said displacement measurement system is constructed and arranged to measure a displacement by providing a first beam of radiation to the measurement system, wherein the diffraction grating is arranged to diffract the first beam of radiation a first time to form diffracted beams. The at least one retro reflector is arranged to subsequently redirect the diffracted beams to diffract a second time on the diffraction grating. The at least one retro reflector is arranged to redirect the diffraction beams to diffract at least a third time on the diffraction grating before the diffracted beams are being recombined to form a second beam. And the displacement system is provided with a sensor configured to receive the second beam and determine the displacement from an intensity of the second beam.
Abstract:
Disclosed is a lithographic apparatus comprising a member susceptible to deformation and a deformation sensor for measuring a deformation of said member. The deformation sensor comprises a first birefringence sensing element arranged to be subjected to stress in dependency of the deformation of said member and a light system configured to transmit polarized light through the first birefringence sensing element, wherein said polarized light has a first polarization state prior to being transmitted through the first birefringence sensing element. The deformation sensor further comprises a detector for detecting a second polarization state of the polarized light after being transmitted through the first birefringence sensing element and a calculation unit to determine the deformation of said member based on the first and second polarization state.
Abstract:
A stage system includes a movable stage, and an encoder for measuring a position of the stage, wherein the encoder includes an emitter for emitting an encoder beam, a grating for interacting with the encoder beam, and a detector for detecting the encoder beam having interacted with the grating, the encoder beam in use propagating along an optical path; a purging cap at least partly enclosing the optical path; and a purging medium supply device for supplying a purging medium into the purging cap.
Abstract:
A sensor includes two shear-mode piezoelectric transducers, wherein each piezoelectric transducer has a bottom surface and a top surface, wherein the top surfaces of the piezoelectric transducers are rigidly connected to each other, and wherein the bottom surfaces of the piezoelectric transducers are configured to be attached to an object to be measured.