摘要:
A family of semiconductor devices is formed in a substrate that contains no epitaxial layer. In one embodiment the family includes a 5V CMOS pair, a 12V CMOS pair, a 5V NPN, a 5V PNP, several forms of a lateral trench MOSFET, and a 30V lateral N-channel DMOS. Each of the devices is extremely compact, both laterally and vertically, and can be fully isolated from all other devices in the substrate.
摘要:
A semiconductor die has a bonding pad for a MOSFET such as a power MOSFET and a separate bonding pad for ESD protection circuitry. Connecting the bonding pads together makes the ESD protection circuitry functional to protect the MOSFET. Before connecting the bonding pads together, the ESD protection circuitry and/or the MOSFET can be separately tested. A voltage higher than functioning ESD protection circuitry would permit can be used when testing the MOSFET. A packaging process such as wire bonding or attaching the die to a substrate in a flip-chip package can connect the bonding pads after testing.
摘要:
A family of semiconductor devices is formed in a substrate that contains no epitaxial layer. In one embodiment the family includes a 5V CMOS pair, a 12V CMOS pair, a 5V NPN, a 5V PNP, several forms of a lateral trench MOSFET, and a 30V lateral N-channel DMOS. Each of the devices is extremely compact, both laterally and vertically, and can be fully isolated from all other devices in the substrate.
摘要:
Power MOSFETs and fabrication processes for power MOSFETs use a continuous conductive gate structure within trenches to avoid problems arising from device topology caused when a gate bus extends above a substrate surface. The conductive gate structure forms gates in device trenches in an active device region and forms a gate bus in a gate bus trench. The gate bus trench that connects to the device trenches can be wide to facilitate forming a gate contact to the gate bus, while the device trenches can be narrow to maximize device density. CMP process can be used to planarize the conductive gate structure and/or overlying insulating layers. The processes are compatible with processes forming self-aligned or conventional contacts in the active device region.