摘要:
A method and apparatus for forming a backside contact, electrical and/or thermal, for die encapsulated in a semiconductor device package are provided. Die of varying thicknesses can be accommodated within the semiconductor device package. Embodiments of the present invention provide a conductive pedestal coupled to a backside contact of a die, where the coupling is performed prior to encapsulating the die within the package. In addition, conductive pedestals coupled to varying die within a semiconductor device package are of such a thickness that each conductive pedestal can be exposed on the back side of the package without exposing or damaging the backside of any encapsulated die. Embodiments of the present invention provide for the conductive pedestals being made of electrically or thermally conductive material and coupled to the device die contact using an electrically and/or thermally conductive adhesive.
摘要:
A method and apparatus for forming a backside contact, electrical and/or thermal, for die encapsulated in a semiconductor device package are provided. Die of varying thicknesses can be accommodated within the semiconductor device package. Embodiments of the present invention provide a conductive pedestal coupled to a backside contact of a die, where the coupling is performed prior to encapsulating the die within the package. In addition, conductive pedestals coupled to varying die within a semiconductor device package are of such a thickness that each conductive pedestal can be exposed on the back side of the package without exposing or damaging the backside of any encapsulated die. Embodiments of the present invention provide for the conductive pedestals being made of electrically or thermally conductive material and coupled to the device die contact using an electrically and/or thermally conductive adhesive.
摘要:
A method (20, 104) for processing a panel (26, 128) during semiconductor device (52) fabrication entails forming grooves (72, 142) in a surface (34, 132) of the panel (26, 128) coincident with a dicing pattern (54) for the panel (26, 128). The grooves (72, 142) extend partially through the panel (26, 128) so that the panel (26, 128) remains intact. The grooves (72, 142) relieve stress in the panel (26, 128) to reduce panel (26, 128) warpage, thus enabling the panel (26, 128) to be reliably held on a support structure (88, 98, 138) via vacuum when undergoing further processing, such as solder printing (86). The method (20, 104) further entails, dicing (96, 152) through the panel (26, 128) from the surface (34, 132) in accordance with the dicing pattern (54) while the panel (26, 128) is mounted on the support structure (98, 138) to singularize the semiconductor devices (52).
摘要:
A structure and method to improve saw singulation quality and wettability of integrated circuit packages (140) assembled with lead frames (112) having half-etched recesses (134) in leads. A method of forming a semiconductor device package includes providing a lead frame strip (110) having a plurality of lead frames. Each of the lead frames includes a depression (130) that is at least partially filled with a material (400) prior to singulating the strip.
摘要:
A method (20, 104) for processing a panel (26, 128) during semiconductor device (52) fabrication entails forming grooves (72, 142) in a surface (34, 132) of the panel (26, 128) coincident with a dicing pattern (54) for the panel (26, 128). The grooves (72, 142) extend partially through the panel (26, 128) so that the panel (26, 128) remains intact. The grooves (72, 142) relieve stress in the panel (26, 128) to reduce panel (26, 128) warpage, thus enabling the panel (26, 128) to be reliably held on a support structure (88, 98, 138) via vacuum when undergoing further processing, such as solder printing (86). The method (20, 104) further entails, dicing (96, 152) through the panel (26, 128) from the surface (34, 132) in accordance with the dicing pattern (54) while the panel (26, 128) is mounted on the support structure (98, 138) to singularize the semiconductor devices (52).
摘要:
One embodiment relates to using a robust metal layer of a semiconductor device to form landing pads. In one embodiment, a sputterable, nonwettable refractory metal is used as a solder mask for the landing pads. A second device may then be coupled to the robust metal layer landing pads of the semiconductor device. In one embodiment, the landing pads are formed while the semiconductor device is in wafer form, and a second device is then coupled to the landing pads of each of the plurality of semiconductor devices within the wafer, such that each semiconductor device within the wafer is electrically coupled to a second device. In this manner, each semiconductor device within the wafer and its corresponding second device may be probed and tested as a system. After probing and testing, the wafer may be singulated into a plurality of individual device assemblies which may then be packaged.
摘要:
A stacked semiconductor device assembly (20) includes a device (24) having conductive traces (34) formed therein, and conductive interconnects (28) electrically connected to the conductive traces (34). Another device (26) has conductive traces (44) formed therein and device pads (54) formed on an outer surface (52) of the device (26). A method (120) entails attaching (84) a magnetic core (30) to an outer surface (42) of the device (24) and forming (92) the conductive interconnects (28) on the outer surface (42) using a stud bumping technique such that the interconnects (28) surround the magnetic core (30). The conductive interconnects (28) are coupled (126) with the device pads (54) using thermocompression bonding to couple the device (26) with the device (24) to form a continuous device coil (22) wrapped around the magnetic core (30) from an alternating electrical connection of the traces (34), the conductive interconnects (28), and the traces (44).
摘要:
A stacked semiconductor device assembly (20) includes a device (24) having conductive traces (34) formed therein, and conductive interconnects (28) electrically connected to the conductive traces (34). Another device (26) has conductive traces (44) formed therein and device pads (54) formed on an outer surface (52) of the device (26). A method (120) entails attaching (84) a magnetic core (30) to an outer surface (42) of the device (24) and forming (92) the conductive interconnects (28) on the outer surface (42) using a stud bumping technique such that the interconnects (28) surround the magnetic core (30). The conductive interconnects (28) are coupled (126) with the device pads (54) using thermocompression bonding to couple the device (26) with the device (24) to form a continuous device coil (22) wrapped around the magnetic core (30) from an alternating electrical connection of the traces (34), the conductive interconnects (28), and the traces (44).
摘要:
Multi-chip semiconductor device assemblies and methods for fabricating such assemblies are provided. An exemplary assembly comprises a first chip having a first surface and comprising a plurality of conductive pads disposed at the first surface and a plurality of circuits. Each of the pads is electrically coupled to one of the circuits. A second chip having a second surface is disposed adjacent to the first surface of the first chip. The second chip comprises a plurality of bonding members disposed at the second surface. Each of the bonding members is connected to a corresponding pad. The second chip is electrically coupled to at least one of the circuits via a corresponding pad and a corresponding bonding member. The second chip comprises a first and a second portion. The first portion overlies at least a portion of the first chip and the second portion extends beyond the first chip.