摘要:
A stacked semiconductor device assembly (20) includes a device (24) having conductive traces (34) formed therein, and conductive interconnects (28) electrically connected to the conductive traces (34). Another device (26) has conductive traces (44) formed therein and device pads (54) formed on an outer surface (52) of the device (26). A method (120) entails attaching (84) a magnetic core (30) to an outer surface (42) of the device (24) and forming (92) the conductive interconnects (28) on the outer surface (42) using a stud bumping technique such that the interconnects (28) surround the magnetic core (30). The conductive interconnects (28) are coupled (126) with the device pads (54) using thermocompression bonding to couple the device (26) with the device (24) to form a continuous device coil (22) wrapped around the magnetic core (30) from an alternating electrical connection of the traces (34), the conductive interconnects (28), and the traces (44).
摘要:
A stacked semiconductor device assembly (20) includes a device (24) having conductive traces (34) formed therein, and conductive interconnects (28) electrically connected to the conductive traces (34). Another device (26) has conductive traces (44) formed therein and device pads (54) formed on an outer surface (52) of the device (26). A method (120) entails attaching (84) a magnetic core (30) to an outer surface (42) of the device (24) and forming (92) the conductive interconnects (28) on the outer surface (42) using a stud bumping technique such that the interconnects (28) surround the magnetic core (30). The conductive interconnects (28) are coupled (126) with the device pads (54) using thermocompression bonding to couple the device (26) with the device (24) to form a continuous device coil (22) wrapped around the magnetic core (30) from an alternating electrical connection of the traces (34), the conductive interconnects (28), and the traces (44).
摘要:
An ion implantation apparatus including a resolving aperture-shutter assembly (31) placed in the ion beam path (18). The resolving aperture-shutter assembly includes a movable shutter (34) and a shutter housing surrounding the movable shutter (34). Selected ions in an ion beam path (18) pass through a hole (44) in movable shutter (34) when the movable shutter (34) is in a first position, and are blocked by the solid surfaces when the movable shutter (34) is in a second position. The enclosure (32, 33, 39) completely surrounds the movable shutter (34). The enclosure (32, 33, 39) includes a first aperture (42) aligned with the ion beam path (18) for allowing the selected ions to enter the enclosure and a second aperture (41) aligned with the ion beam path (18) for allowing the selected ions to exit the enclosure after passing through the hole (44) in the movable shutter.
摘要:
Semiconductor devices (300, 400, and 500) including an integrated circuit (IC) device (100) coupled to a micro-electro-mechanical systems (MEMS) device (200) and a method (600) for producing same are disclosed. The IC device includes a die seal ring (130) and the MEMS device includes a MEMS seal ring (230), and the IC device is coupled to the MEMS device via the die seal ring and the MEMS seal ring. The MEMS device may include one or more passive devices (450, 475) coupled to it. Moreover, a substrate (510) including an aperture (550) may be coupled to the passive device, wherein the aperture enables the passive device to be trimmed after being disposed on the MEMS device. The semiconductor devices include an RF signal path (486) and at least one other signal path (482 and 484), wherein the other signal path(s) may be an analog and/or a digital signal path.
摘要:
Embodiments of inductive communication devices include first and second galvanically isolated IC die and a dielectric structure. Each IC die has a coil proximate to a first surface of the IC die. The IC die are arranged so that the first surfaces of the IC die face each other, and the first coil and the second coil are aligned across a gap between the first and second IC die. The dielectric structure is positioned within the gap directly between the first and second coils, and a plurality of conductive structures are positioned in or on the dielectric structure and electrically coupled with the second IC die. The conductive structures include portions configured to function as bond pads, and the bond pads may be coupled to package leads using wirebonds. During operation, signals are conveyed between the IC die through inductive coupling between the coils.
摘要:
Embodiments of inductive communication devices include first and second galvanically isolated IC die. The first IC die has a first coil proximate to a first surface of the first IC die, and the second IC die has a second coil proximate to a first surface of the second IC die. The first and second IC die are arranged so that the first surfaces of the first and second IC die face each other, and the first coil and the second coil are aligned across a gap between the first and second IC die. One or more dielectric components are positioned within the gap directly between the first and second coils. During operation, a first signal is provided to the first coil, and the first coil converts the signal into a time-varying magnetic field. The magnetic field couples with the second coil, which produces a corresponding second signal.
摘要:
A method of etching a semiconductor substrate (11) includes thinning (102) the semiconductor substrate (11), providing (103) a support layer (30) for the semiconductor substrate (11), providing (104) an etch mask (28) over the semiconductor substrate (11), and etching (105) the semiconductor substrate (11) using an etchant mixture of hydrofluoric acid, nitric acid, phosphoric acid, sulfuric acid, and a wetting agent at a temperature below ambient. The method is capable of using one etch step (105) and one etch mask (28) to form a plurality of trenches (12, 13) having the same width (15, 17) but different depths (16, 18) and different orientations. The method can be used to singulate different sizes and configurations of semiconductor dice from the semiconductor substrate (11).