Prestressed Rod Stiffened Composite Structures
    1.
    发明申请
    Prestressed Rod Stiffened Composite Structures 审中-公开
    预应力筋加固复合结构

    公开(公告)号:US20150217535A1

    公开(公告)日:2015-08-06

    申请号:US13592767

    申请日:2012-08-23

    IPC分类号: B32B5/22 B32B1/00

    摘要: A structurally efficient rod-stiffened panel incorporating pretressing benefits is provided, the prestress provided by pultruded rod which is already in the system. The pultruded rods being retained in either tension or compression stresses apply prestressing via interfacial behavior. The new system improves the efficiency of structural composites by tailoring the stress system within structure to fully utilize the structural potential of various components, and to avoid premature local failures within composite structures. A method for producing a prestressed rod stiffened composite structure is also provided.

    摘要翻译: 提供了具有预应力优点的结构有效的杆加强板,由已经在系统中的拉挤杆提供的预应力。 拉挤杆被保持在拉伸或压缩应力中,通过界面行为施加预应力。 新系统通过调整结构内的应力系统来提高结构复合材料的效率,充分利用各种构件的结构潜力,避免复合结构内的过早局部失效。 还提供了一种用于生产预应力棒加强复合结构的方法。

    Joining via Nano-Scale Reinforced Bonding Media: Materials, Procedures and Applications Thereof
    4.
    发明申请
    Joining via Nano-Scale Reinforced Bonding Media: Materials, Procedures and Applications Thereof 有权
    通过纳米级强化粘合介质加入:材料,程序和应用

    公开(公告)号:US20150367617A1

    公开(公告)日:2015-12-24

    申请号:US13963197

    申请日:2013-08-09

    摘要: Method of joining articles using microscale brazing alloy particles reinforced with slender nanomaterials is described. Surface modified graphite nanomaterials were dispersed in a medium comprised of metal alloy particles, this dispersion was introduced at the interface between the joining articles followed by heating under ultra high vacuum. The nanomaterial-to-metal alloy surface contacts were enhanced by at least one of fusion, embedment and chemical reaction phenomena under high temperature and ultra high vacuum yielding true nanocomposite at the interface. The fusion, embedment and chemical reaction phenomena enhance at least one of the mechanical, electrical, thermal, durability and functional attributes of these contact points, which translate into improved properties of the joined article. The enhanced contact points enable effective use of the distinct qualities of nanomaterials towards development of joints which offer unique balances of strength, ductility, toughness, energy absorption, thermal stability, weathering resistance and other characteristics.

    摘要翻译: 描述了使用细长的纳米材料增强的微细钎焊合金颗粒连接制品的方法。 将表面改性石墨纳米材料分散在由金属合金颗粒组成的介质中,将该分散体引入接合制品之间的界面处,然后在超高真空下加热。 通过在高温和超高真空下的融合,嵌入和化学反应现象中的至少一种在界面处产生真正的纳米复合材料,纳米材料 - 金属合金表面接触得到增强。 融合,嵌入和化学反应现象增强了这些接触点的机械,电气,热,耐久性和功能属性中的至少一个,这转化为改进的接合制品的性质。 增强的接触点能够有效地利用纳米材料的不同质量对接头的开发,其提供强度,延展性,韧性,能量吸收,热稳定性,耐候性和其它特性的独特平衡。

    Joining via nano-scale reinforced bonding media: materials, procedures and applications thereof
    5.
    发明授权
    Joining via nano-scale reinforced bonding media: materials, procedures and applications thereof 有权
    通过纳米级增强粘合介质连接:其材料,程序和应用

    公开(公告)号:US09227274B1

    公开(公告)日:2016-01-05

    申请号:US13963197

    申请日:2013-08-09

    摘要: Method of joining articles using microscale brazing alloy particles reinforced with slender nanomaterials is described. Surface modified graphite nanomaterials were dispersed in a medium comprised of metal alloy particles, this dispersion was introduced at the interface between the joining articles followed by heating under ultra high vacuum. The nanomaterial-to-metal alloy surface contacts were enhanced by at least one of fusion, embedment and chemical reaction phenomena under high temperature and ultra high vacuum yielding true nanocomposite at the interface. The fusion, embedment and chemical reaction phenomena enhance at least one of the mechanical, electrical, thermal, durability and functional attributes of these contact points, which translate into improved properties of the joined article. The enhanced contact points enable effective use of the distinct qualities of nanomaterials towards development of joints which offer unique balances of strength, ductility, toughness, energy absorption, thermal stability, weathering resistance and other characteristics.

    摘要翻译: 描述了使用细长的纳米材料增强的微细钎焊合金颗粒连接制品的方法。 将表面改性石墨纳米材料分散在由金属合金颗粒组成的介质中,将该分散体引入接合制品之间的界面处,然后在超高真空下加热。 通过在高温和超高真空下的融合,嵌入和化学反应现象中的至少一种在界面处产生真正的纳米复合材料,纳米材料 - 金属合金表面接触得到增强。 融合,嵌入和化学反应现象增强了这些接触点的机械,电气,热,耐久性和功能属性中的至少一个,这转化为改进的接合制品的性质。 增强的接触点能够有效地利用纳米材料的不同质量对接头的开发,其提供强度,延展性,韧性,能量吸收,热稳定性,耐候性和其它特性的独特平衡。

    Adaptive composite materials
    8.
    发明授权
    Adaptive composite materials 有权
    自适应复合材料

    公开(公告)号:US08017227B2

    公开(公告)日:2011-09-13

    申请号:US12074071

    申请日:2008-03-03

    IPC分类号: A01K1/015

    摘要: Shaped articles with the inherent capability to evolve in response to at least one of external and internal stimuli are described. These articles comprise at least one solid electrolyte with at least one dissolved salt, and at least one interface which involves a solid electrolytes and a conductive solid. Electric potential gradients, generated within the solid electrolyte by at least one of external and internal stimuli, guide and drive the self-healing and adaptation phenomena. The electric potential gradient is generated by at least one of the following effects: (i) direct application of an electric potential across the solid electrolyte; (ii) introduction of interfaces of different electrode potentials between the solid electrolyte and conductive solids; (iii) introduction of an interface between the solid electrolyte and a conductive solid embodying atoms of lower ionization energy than at least one of the atoms forming the ions of the dissolved salt in solid electrolyte; (iv) application of external load and environmental effects which, either directly or when interacting with defects developed in the article during manufacturing and use, generate stress and temperature gradients which, in turn, produce or magnify the potential gradients between the interfaces with solid electrolyte. The mechanisms through which the electric potential gradient generated by different stimuli bring about changes in article performance involve migration of ions and their electrodeposition within the solid electrolyte and at interfaces.

    摘要翻译: 描述具有响应于外部和内部刺激中的至少一种而演化的固有能力的成形制品。 这些制品包含至少一种具有至少一种溶解盐的固体电解质和至少一种包含固体电解质和导电固体的界面。 通过外部和内部刺激中的至少一种在固体电解质内产生的电势梯度,引导和驱动自愈和适应现象。 电势梯度由以下效应中的至少一个产生:(i)直接施加电势穿过固体电解质; (ii)在固体电解质和导电固体之间引入不同电极电位的界面; (iii)引入固体电解质和体现比固体电解质中形成溶解盐的离子的至少一个原子的电离能低的原子的导电固体之间的界面; (iv)施加外部负荷和环境影响,直接或与制造和使用期间制品中发生的缺陷相互作用时,会产生应力和温度梯度,从而产生或放大界面与固体电解质之间的潜在梯度 。 由不同刺激产生的电势梯度引起制品性能变化的机制包括离子的迁移及其在固体电解质和界面处的电沉积。

    Adaptive composite materials
    10.
    发明申请
    Adaptive composite materials 有权
    自适应复合材料

    公开(公告)号:US20090218537A1

    公开(公告)日:2009-09-03

    申请号:US12074071

    申请日:2008-03-03

    IPC分类号: H01B1/00

    摘要: Shaped articles with the inherent capability to evolve in response to at least one of external and internal stimuli are described. These articles comprise at least one solid electrolyte with at least one dissolved salt, and at least one interface which involves a solid electrolytes and a conductive solid. Electric potential gradients, generated within the solid electrolyte by at least one of external and internal stimuli, guide and drive the self-healing and adaptation phenomena. The electric potential gradient is generated by at least one of the following effects: (i) direct application of an electric potential across the solid electrolyte; (ii) introduction of interfaces of different electrode potentials between the solid electrolyte and conductive solids; (iii) introduction of an interface between the solid electrolyte and a conductive solid embodying atoms of lower ionization energy than at least one of the atoms forming the ions of the dissolved salt in solid electrolyte; (iv) application of external load and environmental effects which, either directly or when interacting with defects developed in the article during manufacturing and use, generate stress and temperature gradients which, in turn, produce or magnify the potential gradients between the interfaces with solid electrolyte. The mechanisms through which the electric potential gradient generated by different stimuli bring about changes in article performance involve migration of ions and their electrodeposition within the solid electrolyte and at interfaces.

    摘要翻译: 描述具有响应于外部和内部刺激中的至少一种而演化的固有能力的成形制品。 这些制品包含至少一种具有至少一种溶解盐的固体电解质和至少一种包含固体电解质和导电固体的界面。 通过外部和内部刺激中的至少一种在固体电解质内产生的电势梯度,引导和驱动自愈和适应现象。 电势梯度由以下效应中的至少一个产生:(i)直接施加电势穿过固体电解质; (ii)在固体电解质和导电固体之间引入不同电极电位的界面; (iii)引入固体电解质和体现比固体电解质中形成溶解盐的离子的至少一个原子的电离能低的原子的导电固体之间的界面; (iv)施加外部负荷和环境影响,直接或与制造和使用期间制品中发生的缺陷相互作用时,会产生应力和温度梯度,从而产生或放大界面与固体电解质之间的潜在梯度 。 由不同刺激产生的电势梯度引起制品性能变化的机制包括离子的迁移及其在固体电解质和界面处的电沉积。