摘要:
A semiconductor device and method of manufacturing is disclosed which has a tensile and/or compressive strain applied thereto. The method includes forming at least one trench in a material; and filling the at least one trench by an oxidation process thereby forming a strain concentration in a channel of a device. The structure includes a gate structure having a channel and a first oxidized trench on a first of the channel, respectively. The first oxidized trench creates a strain component in the channel to increase device performance.
摘要:
The disclosure relates generally to nano-filters and methods of forming same, and methods of filtration. The nano-filter includes a substrate and at least one nanowire structure located between an inlet and an outlet. The nanowire structure may include a plurality of vertically stacked horizontal nanowires.
摘要:
Solutions for forming stress optimizing contact bars and contacts are disclosed. In one aspect, a semiconductor device is disclosed including an n-type field effect transistor (NFET) having source/drain regions; a p-type field effect transistor (PFET) having source/drain regions; a stress inducing layer over both the NFET and the PFET, the stress inducing layer inducing only one of a compressive stress and a tensile stress; a contact bar extending through the stress inducing layer and coupled to at least one of the source/drain regions of a selected device of the PFET and the NFET to modify a stress induced in the selected device compared to a stress induced in the other device; and a round contact extending through the stress inducing layer and coupled to at least one of the source/drain regions of the other device of the PFET and the NFET.
摘要:
Semiconductor structures with damascene metal gates and pixel sensor cell shields, methods of manufacture and design structures are provided. The method includes forming a dielectric layer over a dummy gate structure. The method further includes forming one or more recesses in the dielectric layer. The method further includes removing the dummy gate structure in the dielectric layer to form a trench. The method further includes forming metal in the trench and the one more recesses in the dielectric layer to form a damascene metal gate structure in the trench and one or more metal components in the one or more recesses.
摘要:
Disclosed is an integrated circuit device having series-connected planar or non-planar field effect transistors (FETs) with integrated voltage equalization and a method of forming the device. The series-connected FETs comprise gates positioned along a semiconductor body to define the channel regions for the series-connected FETs. Source/drain regions are located within the semiconductor body on opposing sides of the channel regions such that each portion of the semiconductor body between adjacent gates comprises one source/drain region for one field effect transistor abutting another source/drain region for another field effect transistor. Integrated voltage equalization is achieved through a conformal conductive layer having a desired resistance and positioned over the series-connected FETs such that it is electrically isolated from the gates, but in contact with the source/drain regions within the semiconductor body.
摘要:
Disclosed is an integrated circuit device having series-connected planar or non-planar field effect transistors (FETs) with integrated voltage equalization and a method of forming the device. The series-connected FETs comprise gates positioned along a semiconductor body to define the channel regions for the series-connected FETs. Source/drain regions are located within the semiconductor body on opposing sides of the channel regions such that each portion of the semiconductor body between adjacent gates comprises one source/drain region for one field effect transistor abutting another source/drain region for another field effect transistor. Integrated voltage equalization is achieved through a conformal conductive layer having a desired resistance and positioned over the series-connected FETs such that it is electrically isolated from the gates, but in contact with the source/drain regions within the semiconductor body.
摘要:
Pixel sensor cells, methods of fabricating pixel sensor cells, and design structures for a pixel sensor cell. A transistor in the pixel sensor cell has a gate structure that includes a gate dielectric with a thick region and a thin region. A gate electrode of the gate structure is formed on the thick region of the gate dielectric and the thin region of the gate dielectric. The thick region of the gate dielectric and the thin region of the gate dielectric provide the transistor with an asymmetric threshold voltage.
摘要:
Transmission gates, methods of fabricating transmission gates, and design structures for a transmission gate. The transmission gate includes an n-channel field effect transistor characterized by terminals that are asymmetrically doped and a p-channel field effect transistor characterized by terminals that are asymmetrically doped.
摘要:
A field effect device includes a channel region disposed on a silicon on insulator (SOI) layer, a gate portion disposed on the channel region, a source region disposed on the SOI layer and connected to the channel region having a horizontal surface and a vertical surface, the vertical surface arranged perpendicular to a linear axis of the device, a silicide portion that includes the horizontal surface and vertical surface of the source region, a contact including a metallic material in contact with the horizontal surface and vertical surface of the source region, and a drain region connected to the channel region disposed on the SOI layer.
摘要:
A semiconductor device including semiconductor material having a bend and a trench feature formed at the bend, and a gate structure at least partially disposed in the trench feature. A method of fabricating a semiconductor structure including forming a semiconductor material with a trench feature over a layer, forming a gate structure at least partially in the trench feature, and bending the semiconductor material such that stress is induced in the semiconductor material in an inversion channel region of the gate structure.