摘要:
Gate oxides having different thicknesses are formed on a semiconductor substrate by forming a first gate oxide on the top surface of the substrate, forming a sacrificial hard mask over a selected area of the first gate oxide; and then forming a second gate oxide. A first poly layer may be formed on the first gate oxide, under the hard mask. After the hard mask is removed, a second poly layer may be formed over the second gate oxide and over the first poly layer. This enables the use of high-k dielectric materials, and the first gate oxide can be thinner than the second gate oxide.
摘要:
Gate oxides having different thicknesses are formed on a semiconductor substrate by forming a first gate oxide on the top surface of the substrate, forming a sacrificial hard mask over a selected area of the first gate oxide; and then forming a second gate oxide. A first poly layer may be formed on the first gate oxide, under the hard mask. After the hard mask is removed, a second poly layer may be formed over the second gate oxide and over the first poly layer. This enables the use of high-k dielectric materials, and the first gate oxide can be thinner than the second gate oxide.
摘要:
A method of forming CMOS semiconductor materials with PFET and NFET areas formed on a semiconductor substrate, covered respectively with a PFET and NFET gate dielectric layers composed of silicon oxide and different degrees of nitridation thereof. Provide a silicon substrate with a PFET area and an NFET area and form PFET and NFET gate oxide layers thereover. Provide nitridation of the PFET gate oxide layer above the PFET area to form the PFET gate dielectric layer above the PFET area with a first concentration level of nitrogen atoms in the PFET gate dielectric layer above the PFET area. Provide nitridation of the NFET gate oxide layer to form the NFET gate dielectric layer above the NFET area with a different concentration level of nitrogen atoms from the first concentration level. The NFET gate dielectric layer and the PFET gate dielectric layer can have the same thickness.
摘要:
A semiconductor structure and method of forming the same, comprising forming a uniform buffer layer of diffusion-controlling stable material on top of a base gate dielectric layer, and then forming a uniform layer which contains a source of transitional metal atoms, and then annealing the structure to diffuse the transitional metal atoms from their source through the diffusion-controlling material and into the base gate dielectric layer.
摘要:
A semiconductor structure and method of forming the same, comprising forming a uniform buffer layer of diffusion-controlling stable material on top of a base gate dielectric layer, and then forming a uniform layer which contains a source of transitional metal atoms, and then annealing the structure to diffuse the transitional metal atoms from their source through the diffusion-controlling material and into the base gate dielectric layer.
摘要:
A method of forming a doped gate structure on a semiconductor device and a semiconductor structure formed in that method are provided. The method comprises the steps of providing a semiconductor device including a gate dielectric layer, and forming a gate stack on said dielectric layer. This latter step, in turn, includes the steps of forming a first gate layer on the dielectric layer, and forming a second disposable layer on top of the first gate layer. A fat spacer is formed around the first gate layer and the second disposable layer. The second disposable layer is removed, and ions are implanted in the first gate layer to supply additional dopant into the gate above the gate dielectric layer, while the fat disposable spacer keeps the implanted ions away from the critical source and drain diffusion region.
摘要:
A method of forming a structure having sub-lithographic dimensions is provided. The method includes: forming a chamfered mandrel on a substrate, the mandrel having an angled surface; and performing an angled ion implantation to obtain an implanted shadow region in the substrate, the implanted shadow mask having at least one sub-lithographic dimension.
摘要:
A method of forming a doped gate structure on a semiconductor device and a semiconductor structure formed in that method are provided. The method comprises the steps of providing a semiconductor device including a gate dielectric layer, and forming a gate stack on said dielectric layer. This latter step, in turn, includes the steps of forming a first gate layer on the dielectric layer, and forming a second disposable layer on top of the first gate layer. A fat spacer is formed around the first gate layer and the second layers. The second disposable layer is removed, and ions are implanted in the first gate layer to supply additional dopant into the gate above the gate dielectric layer, while the fat disposable spacer keeps the implanted ions away from the critical source and drain diffusion region.
摘要:
A method of forming a doped gate structure on a semiconductor device and a semiconductor structure formed in that method are provided. The method comprises the steps of providing a semiconductor device including a gate dielectric layer, and forming a gate stack on said dielectric layer. This latter step, in turn, includes the steps of forming a first gate layer on the dielectric layer, and forming a second disposable layer on top of the first gate layer. A fat spacer is formed round the first gate layer and the second disposable layer. The second disposable layer is removed, and ions are implanted in the first gate layer to supply additional dopant into the gate above the gate dielectric layer, while the fat disposable spacer keeps the implanted ions away from the critical source and drain diffusion regions.
摘要:
A method of selectively forming either an epi-Si-containing or a silicide layer on portions of a Si-containing substrate wherein a nitrogen-containing layer formed by a low-temperature nitridation process is employed to prevent formation of the epi-Si-containing or silicide layer in predetermined areas of the substrate. The method of the present invention includes the steps of subjecting at least one exposed surface of a Si-containing substrate to a low- temperature nitridation process so as to form a nitrogen-containing layer at or near the at least one exposed surface, wherein other surfaces of the Si-containing substrate are protected by a patterned photoresist; removing the patterned photoresist from the other surfaces of the Si-containing substrate; and forming an epi-Si-containing layer or a silicide layer on the other surfaces of the substrate which do not contain the nitrogen-containing layer. In accordance with the present invention, epi-Si-containing or silicide is not formed in areas containing the nitrogen-containing layer.