摘要:
Polymeric materials are used to make a pliable, non-toxic, injectable porous template for vascular ingrowth. The pore size, usually between approximately 100 and 300 microns, allows vascular and connective tissue ingrowth throughout approximately 10 to 90% of the matrix following implantation, and the injection of cells uniformly throughout the implanted matrix without damage to the cells or patient. The introduced cells attach to the connective tissue within the matrix and are fed by the blood vessels. The preferred material for forming the matrix or support structure is a biocompatible synthetic polymer which degrades in a controlled manner by hydrolysis into harmless metabolites, for example, polyglycolic acid, polylactic acid, polyorthoester, polyanhydride, or copolymers thereof. The rate of tissue ingrowth increases as the porosity and/or the pore size of the implanted devices increases. The time required for the tissue to fill the device depends on the polymer crystallinity and is less for amorphous polymers versus semicrystalline polymers. The vascularity of the advancing tissue is consistent with time and independent of the biomaterial composition and morphology.
摘要:
Polymeric materials are used,to make a pliable, non-toxic, injectable porous template for vascular ingrowth. The pore size, usually between approximately 100 and 300 microns, allows vascular and connective tissue ingrowth throughout approximately 10 to 90% of the matrix following implantation, and the injection of cells uniformly throughout the implanted matrix without damage to the cells or patient. The introduced cells attach to the connective tissue within the matrix and are fed by the blood vessels. The preferred material for forming the matrix or support structure is a biocompatible synthetic polymer which degrades in a controlled manner by hydrolysis into harmless metabolites, for example, polyglycolic acid, polylactic acid, polyorthoester, polyanhydride, or copolymers thereof. The rate of tissue ingrowth increases as the porosity and/or the pore size of the implanted devices increases. The time required for the tissue to fill the device depends on the polymer crystallinity and is less for amorphous polymers versus semicrystalline polymers. The vascularity of the advancing tissue is consistent with time and independent of the biomaterial composition and morphology.
摘要:
A novel processing technique is reported to bond non-woven fibers and, thus, prepare structural interconnecting fiber networks with different shapes for organ implants. The fibers are physically joined without any surface or bulk modification and have their initial diameter.
摘要:
Biocompatible porous polymer membranes are prepared by dispersing salt particles in a biocompatible polymer solution. The solvent in which the polymer is dissolved is evaporated to produce a polymer/salt composite membrane. The polymer can then be heated and cooled at a predetermined constant rate to provide the desired amount of crystallinity. Salt particles are leached out of the membrane by immersing the membrane in water or another solvent for the salt but not the polymer. The membrane is dried, resulting in a porous, biocompatible membrane to which dissociated cells can attach and proliferate. A three-dimensional structure can be manufactured using the polymer membranes by preparing a contour drawing of the shape of the structure, determining the dimensions of thin cross-sectional layers of the shape, forming porous polymer membranes corresponding to the dimensions of the layers, and laminating the membranes together to form a three-dimensional matrix having the desired shape.
摘要:
A novel processing technique is reported to bond non-woven fibers and, thus, prepare structural interconnecting fiber networks with different shapes for organ implants. The fibers are physically joined without any surface or bulk modification and have their initial diameter.
摘要:
Polymeric materials are used to make a pliable, non-toxic, injectable porous template for vascular ingrowth. The pore size, usually between approximately 100 and 300 microns, allows vascular and connective tissue ingrowth throughout approximately 10 to 90% of the matrix following implantation, and the injection of cells uniformly throughout the implanted matrix without damage to the cells or patient. The introduced cells attach to the connective tissue within the matrix and are fed by the blood vessels. The preferred material for forming the matrix or support structure is a biocompatible synthetic polymer which degrades in a controlled manner by hydrolysis into harmless metabolites, for example, polyglycolic acid, polylactic acid, polyorthoester, polyanhydride, or copolymers thereof. The rate of tissue ingrowth increases as the porosity and/or the pore size of the implanted devices increases. The time required for the tissue to fill the device depends on the polymer crystallinity and is less for amorphous polymers versus semicrystalline polymers. The vascularity of the advancing tissue is consistent with time and independent of the biomaterial composition and morphology.
摘要:
Polymeric materials are used to make a pliable, non-toxic, injectable porous template for vascular ingrowth. The pore size, usually between approximately 100 and 300 microns, allows vascular and connective tissue ingrowth throughout approximately 10 to 90% of the matrix following implantation, and the injection of cells uniformly throughout the implanted matrix without damage to the cells or patient. The introduced cells attach to the connective tissue within the matrix and are fed by the blood vessels. The preferred material for forming the matrix or support structure is a biocompatible synthetic polymer which degrades in a controlled manner by hydrolysis into harmless metabolites, for example, polyglycolic acid, polylactic acid, polyorthoester, polyanhydride, or copolymers thereof. The rate of tissue ingrowth increases as the porosity and/or the pore size of the implanted devices increases. The time required for the tissue to fill the device depends on the polymer crystallinity and is less for amorphous polymers versus semicrystalline polymers. The vascularity of the advancing tissue is consistent with time and independent of the biomaterial composition and morphology.
摘要:
A microfluidic system for causing perturbations in a cell membrane, the system including a microfluidic channel defining a lumen and being configured such that a cell suspended in a buffer can pass therethrough, wherein the microfluidic channel includes a cell-deforming constriction, wherein a diameter of the constriction is a function of the diameter of the cell.
摘要:
The present invention generally relates to nanoparticles with an amphiphilic component. One aspect of the invention is directed to a method of developing nanoparticles with desired properties. In one set of embodiments, the method includes producing libraries of nanoparticles having highly controlled properties, which can be formed by mixing together two or more macromolecules in different ratios. One or more of the macromolecules may be a polymeric conjugate of a moiety to a biocompatible polymer. In some cases, the nanoparticle may contain a drug. Other aspects of the invention are directed to methods using nanoparticle libraries.
摘要:
The present invention provides hydrogels and compositions thereof for vocal cord repair or augmentation, as well as other soft tissue repair or augmentation (e.g., bladder neck augmentation, dermal fillers, breast implants, intervertebral disks, muscle-mass). The hydrogels or compositions thereof are injected into the superficial lamina propria or phonatory epithelium to restore the phonatory mucosa of the vocal cords, thereby restoring a patient's voice. In particular, it has been discovered that hydrogels with an elastic shear modulus of approximately 25 Pa are useful in restoring the pliability of the phonatory mucosa. The invention also provides methods of preparing and using the inventive hydrogels.