Abstract:
Disclosed herein are methods for operating a computing device including determining an amount of pressure exerted on a touch-sensitive surface of the computing device. According to the various embodiments, a touch input is received by the touch-sensitive surface. The amount of pressure exerted by the touch input on the touch-sensitive surface is then determined. The computing device operates in a first manner when a first amount of pressure is received and operates in a second manner when a second amount of pressure is received.
Abstract:
Electronic devices may contain electrical systems in which electrical components are mounted on a substrate such as a printed circuit board. The electrical components may include surface mount technology components. Multiple surface mount technology components may be stacked on top of each other and beside each other to form an electrical component that minimizes the amount of area that is consumed on a printed circuit board. Noise suppression circuits and other circuits may be implemented using stacked surface mount technology components. Surface mount technology components placed on the printed circuit board may be pushed together and subsequently injection molded to form packed component groups. An integrated circuit may be mounted to the printed circuit board via an interposer and may cover components mounted to the printed circuit board. An integrated circuit may be mounted over a recessed portion of the printed circuit board on which components are mounted.
Abstract:
This is directed to self-shielded components and methods for making the same. A self-shielded component can include an electromagnetic interference (EMI) shield that contains circuitry within a shielded space defined by the EMI shield. Self-shielding can be achieved by interfacing a conformal shield layer to a ground layer disposed on or within a substrate of the self-shielded component. The combination of the conformal shield layer and the around layer can form a boundary of the shielded space that envelops circuitry requiring shielding. This enables the self-shielded component to be mounted to a circuit board without requiring a shield can or other processing to impart EMI shielding. In addition, the self-shielded components include the benefits of EMI shielding while simultaneously decreasing space requirements.
Abstract:
The described embodiments relate generally to electronic devices and more particularly to methods for selectively encapsulating circuit boards and other electronic components contained within electronic devices. A first encapsulation layer can be limited to specific regions of a circuit board using a variety of processes including molding, laser ablation, etching, milling, and the like. Secondary assembly steps can then take place in the regions where the encapsulation layer is removed. In some embodiments, secondary encapsulants having various thermal, electrical, and optical characteristics can fill openings left in the first encapsulation layer to aid in the operation of underlying components.
Abstract:
This is directed to self-shielded components and methods for making the same. A self-shielded component can include an electromagnetic interference (EMI) shield that contains circuitry within a shielded space defined by the EMI shield. Self-shielding can be achieved by interfacing a conformal shield layer to a ground layer disposed on or within a substrate of the self-shielded component. The combination of the conformal shield layer and the around layer can form a boundary of the shielded space that envelops circuitry requiring shielding. This enables the self-shielded component to be mounted to a circuit board without requiring a shield can or other processing to impart EMI shielding. In addition, the self-shielded components include the benefits of EMI shielding while simultaneously decreasing space requirements.
Abstract:
Electronic devices may contain electrical systems in which electrical components are mounted on a substrate such as a printed circuit board. The electrical components may include surface mount technology components. Multiple surface mount technology components may be stacked on top of each other and beside each other to form an electrical component that minimizes the amount of area that is consumed on a printed circuit board. Noise suppression circuits and other circuits may be implemented using stacked surface mount technology components. Surface mount technology components placed on the printed circuit board may be pushed together and subsequently injection molded to form packed component groups. An integrated circuit may be mounted to the printed circuit board via an interposer and may cover components mounted to the printed circuit board. An integrated circuit may be mounted over a recessed portion of the printed circuit board on which components are mounted.
Abstract:
Disclosed herein are methods for operating a computing device including determining an amount of pressure exerted on a touch-sensitive surface of the computing device. According to the various embodiments, a touch input is received by the touch-sensitive surface. The amount of pressure exerted by the touch input on the touch-sensitive surface is then determined. The computing device operates in a first manner when a first amount of pressure is received and operates in a second manner when a second amount of pressure is received.
Abstract:
Disclosed herein are methods for operating a computing device including determining an amount of pressure exerted on a touch-sensitive surface of the computing device. According to the various embodiments, a touch input is received by the touch-sensitive surface. The amount of pressure exerted by the touch input on the touch-sensitive surface is then determined. The computing device operates in a first manner when a first amount of pressure is received and operates in a second manner when a second amount of pressure is received.
Abstract:
Disclosed herein are methods for operating a computing device including determining an amount of pressure exerted on a touch-sensitive surface of the computing device. According to the various embodiments, a touch input is received by the touch-sensitive surface. The amount of pressure exerted by the touch input on the touch-sensitive surface is then determined. The computing device operates in a first manner when a first amount of pressure is received and operates in a second manner when a second amount of pressure is received.
Abstract:
Disclosed herein are methods for operating a computing device including determining an amount of pressure exerted on a touch-sensitive surface of the computing device. According to the various embodiments, a touch input is received by the touch-sensitive surface. The amount of pressure exerted by the touch input on the touch-sensitive surface is then determined. The computing device operates in a first manner when a first amount of pressure is received and operates in a second manner when a second amount of pressure is received.