Abstract:
The present disclosure relates to a corner spoiler designed to decrease high deposition rates on corner regions of substrates by changing the gas flow. In one embodiment, a corner spoiler for a processing chamber includes an L-shaped body fabricated from a dielectric material, wherein the L-shaped body is configured to change plasma distribution at a corner of a substrate in the processing chamber. The L-shaped body includes a first and second leg, wherein the first and second legs meet at an inside corner of the L-shaped body. The length of the first or second leg is twice the distance defined between the first or second leg and the inside corner. In another embodiment, a shadow frame for a depositing chamber includes a rectangular shaped body having a rectangular opening therethrough, and one or more corner spoilers coupled to the rectangular shaped body at corners of the rectangular shaped body.
Abstract:
Embodiments described herein relate to methods of controlling the uniformity of SiN films deposited over large substrates. When the precursor gas or gas mixture in the chamber is energized by applying radio frequency (RF) power to the chamber, the RF current flowing through the plasma generates a standing wave effect (SWE) in an inter-electrode gap. SWEs become significant as substrate or electrode size approaches the RF wavelength. Process parameters, such as process power, process pressure, electrode spacing, and gas flow ratios all affect the SWE. These parameters can be altered in order to minimize the SWE problem and to achieve acceptable thickness and properties uniformities. In some embodiments, methods of depositing a dielectric film over a large substrate at various process power ranges, at various process pressure ranges, at various gas flow rates, while achieving various plasma densities will act to reduce the SWE, creating greater plasma stability.
Abstract:
The present invention generally relates to a substrate support for use in a processing chamber. The substrate support is divided into quadrants with each quadrant capable of heating independent of the other quadrants. The independent heating permits the substrate support to provide different heating to either different substrate simultaneously disposed on the substrate support or to different areas of a common substrate. Thus, the substrate heating may be tailored to ensure desired processing of the substrate or substrates occurs.
Abstract:
Embodiments of the present invention provide methods for depositing a nitrogen-containing material on large-sized substrates disposed in a processing chamber. In one embodiment, a method includes processing a batch of substrates within a processing chamber to deposit a nitrogen-containing material on a substrate from the batch of substrates, and performing a seasoning process at predetermined intervals during processing the batch of substrates to deposit a conductive seasoning layer over a surface of a chamber component disposed in the processing chamber. The chamber component may include a gas distribution plate fabricated from a bare aluminum without anodizing. In one example, the conductive seasoning layer may include amorphous silicon, doped amorphous silicon, doped silicon, doped polysilicon, doped silicon carbide, or the like.
Abstract:
A diffuser includes a front-side gradient surface formed from a diffuser block, a back-side gradient surface formed from the diffuser block, and opening structures formed from the front-side gradient surface to the back-side gradient surface. Each opening structure includes a conical opening having a first end along the front-side gradient surface and a second end corresponding to an apex at a depth within the diffuser block, and a cylindrical opening formed from the depth to the back-side gradient surface. The opening structures are arranged in rows including a first set of rows and a second set of rows alternately positioned along a length of the diffuser block.
Abstract:
Embodiments of the present disclosure generally relates a shadow frame including two opposing major side frame members adjacent to two opposing minor side frame members coupled together with a corner bracket, wherein the corner bracket includes a corner inlay having legs that extend in directions generally orthogonal to each other.
Abstract:
Embodiments of the invention generally include shield frame assembly for use with a showerhead assembly, and a showerhead assembly having a shield frame assembly that includes an insulator that tightly fits around the perimeter of a showerhead in a vacuum processing chamber. In one embodiment, a showerhead assembly includes a gas distribution plate and a multi-piece frame assembly that circumscribes a perimeter edge of the gas distribution plate. The multi-piece frame assembly allows for expansion of the gas distribution plate without creating gaps which may lead to arcing. In other embodiments, the insulator is positioned to be have the electric fields concentrated at the perimeter of the gas distribution plate located therein, thereby reducing arcing potential.
Abstract:
A method can include removing material from a first side of a diffuser block to form a back-side gradient surface of a diffuser, wherein the back-side gradient surface is a first concave surface, after removing the material from the first side, removing material from a second side of the diffuser block to form a front-side gradient surface of the diffuser, wherein the front-side gradient surface is a second concave surface, and forming a plurality of opening structures through the front-side gradient surface to the back-side gradient surface.
Abstract:
Methods for manufacturing a diffuser plate for a PECVD chamber are provided. The methods provide for applying a compliant abrasive medium to round the sharp edges at corners of the output holes on a contoured downstream side of a gas diffuser plate. By rounding the edges of the output holes reduces the flaking of deposited materials on the downstream side of the gas diffuser plate and reduces the amount of undesirable particles generated during the PECVD deposition process.
Abstract:
The present disclosure generally relates to capacitors having a multilayer dielectric material between two electrodes. The multilayer dielectric material can have a small thickness with little to no breakdown strength reduction. By utilizing a multilayer dielectric structure in a capacitor, not only can the breakdown strength remain at an acceptable level, but the collective thickness of the capacitor may be reduced to accommodate the higher density pixels for display devices or any device that utilizes a capacitor.