摘要:
A microfluidic structure and method, where the structure comprises a featureless gasket layer allowing for efficient and reproducible structure production and assembly. Layering methods allow for the use of a variety of device materials and easy assembly.
摘要:
Mechanical actuation of valves in flexible fluidic structures allows for the regulation of fluid flow. In accordance with the disclosure herein, a fluidic structure is provided wherein mechanical actuation is conferred using a pin to actuate a flexible layer to occlude fluid flow in a fluid channel.
摘要:
New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.
摘要:
New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.
摘要:
Described herein are automated, integrated microfluidic device comprising a chemical reaction chip comprising for performing chemical reaction, a microscale column integrated with the chip and configured for liquid flow from the column to at least one flow channel, and wherein the fluid flow into the column is controlled by on-chip valves; and comprising at least two on-chip valves for controlling fluid flow in the microfluidic device.
摘要:
Described herein are automated, integrated microfluidic device comprising a chemical reaction chip comprising for performing chemical reaction, a microscale column integrated with the chip and configured for liquid flow from the column to at least one flow channel, and wherein the fluid flow into the column is controlled by on-chip valves; and comprising at least two on-chip valves for controlling fluid flow in the microfluidic device.
摘要:
Described herein are automated, integrated microfluidic device comprising a chemical reaction chip comprising for performing chemical reaction, a microscale column integrated with the chip and configured for liquid flow from the column to at least one flow channel, and wherein the fluid flow into the column is controlled by on-chip valves; and comprising at least two on-chip valves for controlling fluid flow in the microfluidic device.
摘要:
Methods and apparatus enable radiosynthesis of radiolabeled compounds using electrochemical trapping and release. The trapping and release of radioactive isotopes all occur inside a microreactor, a vial or similar device, thus eliminating the need for azeotropic drying and several dead-end filling steps, as well as the necessity to move concentrated radioisotopes from one compartment of the chip to another. These and other features allow radioisotope enrichment to be carried out internally within a radiochemical synthesis chip, providing faster and more robust operation, as well as producing very high radiochemical labeling yields.
摘要:
Provided herein is a microfluidic device and related method for controlling flow of different fluid components of a fluid. The microfluidic device comprises an input channel, focusing channel and an assaying channel. The microfluidic device is adapted to separate a fluid into at least two fluid components, and is further adapted to detect a target material comprised within one of the fluid components. The method comprises providing a channel, the channel having a dimension which is a function of a dimension of one of the fluid components and deliver the fluid through the channel at a set flow rate.
摘要:
A nanomesh phononic structure includes: a sheet including a first material, the sheet having a plurality of phononic-sized features spaced apart at a phononic pitch, the phononic pitch being smaller than or equal to twice a maximum phonon mean free path of the first material and the phononic size being smaller than or equal to the maximum phonon mean free path of the first material.