摘要:
Methods of selectively positioning a micro-object in a microfluidic device are described in this application. The microfluidic device can comprise an enclosure having an inlet, an outlet, and a flow region connecting the inlet and outlet, and an electrode activation substrate having a photoconductive layer. The methods of selectively positioning can comprising: projecting a first light beam on an electrode activation substrate of the microfluidic device, wherein the first position is proximal to the first micro-object, and wherein the first light beam activates a positive dielectrophoresis (DEP) force within the enclosure sufficient to capture the first micro-object; and projecting a second light beam upon a second position on the electrode activation substrate, wherein the second position is adjacent to or at least partially surrounding the first position, without overlapping the first position, the second light beam activating a positive DEP force within the enclosure sufficient to capture second micro-objects other than the first micro-object. The methods of selectively positioning can further comprise moving the first light beam towards a third position on the electrode activation substrate, wherein the DEP force activated by the first light beam is sufficient to move the first micro-object to the third position. Optionally, the methods can include moving the second light beam in relation to the first light beam to prevent micro-objects other than the first micro-object from being captured by the first light beam. Other embodiments are described.
摘要:
Optically-actuated microfluidic devices permit the use of spatially-modulated light to manipulate micro-objects such as biological cells. Systems and methods are described for providing sequences of light patterns to move and direct a plurality of micro-objects within the environment of a microfluidic device. The sequenced light patterns provide improved efficiency in directing the transport of the plurality of micro-objects. Other embodiments are described.
摘要:
Methods are provided for the automated detection and/or counting of micro-objects in a microfluidic device. In addition, methods are provided for repositioning micro-objects in a microfluidic device. In addition, methods are provided for separating micro-objects in a spatial region of the microfluidic device.
摘要:
Optically-actuated microfluidic devices permit the use of spatially-modulated light to manipulate micro-objects such as biological cells. Systems and methods are described for providing sequences of light patterns to move and direct a plurality of micro-objects within the environment of a microfluidic device. The sequenced light patterns provide improved efficiency in directing the transport of the plurality of micro-objects. Other embodiments are described.
摘要:
Methods are provided for the automated detection of micro-objects in a microfluidic device. In addition, methods are provided for repositioning micro-objects in a microfluidic device. In addition, methods are provided for separating micro-objects in a spatial region of the microfluidic device.
摘要:
Systems for operating a microfluidic device are described. The systems comprise a first surface configured to interface and operatively couple with a microfluidic device and a lid configured to retain the microfluidic device on the first surface. The lid comprises a first portion having a first fluid port configured to operatively couple with and flow fluidic medium into and/or out of a first fluid inlet/outlet of the microfluidic device and a second portion having a second fluid port configured to operatively couple with and flow fluidic medium into and/or out of a second fluid inlet/outlet of the microfluidic device. The second portion of the lid is separable from the first portion and movable between a closed position in which the second fluid port of the second portion of the cover is operatively coupled with the second fluid inlet/outlet of the microfluidic device and an open position in which a portion of the microfluidic device that contains the second fluid inlet/outlet is exposed. Other embodiments are described.
摘要:
Disclosed are methods, systems, and articles of manufacture for performing a process on biological samples. An analysis of biological samples in multiple regions of interest in a microfluidic device and a timeline correlated with the analysis may be identified. One or more region-of-interest types for the multiple regions of interest may be determined; and multiple characteristics may be determined for the biological samples based at least in part upon the one or more region-of-interest types. Associated data that respectively correspond to the multiple regions of interest in a user interface for at least a portion of the biological samples in the user interface based at least in part upon the multiple identifiers and the timeline. A count of the biological samples in a region of interest may be determined based at least in part upon a class or type of data using a convolutional neural network (CNN).
摘要:
Methods are provided for the automated detection of micro-objects in a microfluidic device. In addition, methods are provided for repositioning micro-objects in a microfluidic device. In addition, methods are provided for separating micro-objects in a spatial region of the microfluidic device.
摘要:
Methods are provided for the automated detection of micro-objects in a microfluidic device. In addition, methods are provided for repositioning micro-objects in a microfluidic device. In addition, methods are provided for separating micro-objects in a spatial region of the microfluidic device.
摘要:
Disclosed herein are methods for performing assays, including general functional assays, on a biological cell. Also disclosed herein are methods of barcoding the 5′ ends of RNA from a biological cell and methods of preparation of expression constructs from the barcoded RNA. The barcoded RNA can encode proteins of interest, such as B cell receptor (BCR) heavy and light chain sequences. The expression constructs can be generated individually or in a paired/multiplexed manner, allowing rapid re-expression of individual proteins or protein complexes.