Abstract:
A chemical mechanical polishing composition for polishing a substrate having a polysilicon layer includes a water based liquid carrier, a silica abrasive, an amino acid or guanidine derivative containing polysilicon polishing accelerator, and an alkali metal salt. The composition includes less than about 500 ppm tetraalkylammonium salt and has a pH in a range from about 10 to about 11.
Abstract:
The invention provides a chemical-mechanical polishing composition including first abrasive particles, wherein the first abrasive particles are wet-process ceria particles, have a median particle size of about 40 nm to about 100 nm, are present in the polishing composition at a concentration of about 0.005 wt. % to about 2 wt. %, and have a particle size distribution of at least about 300 nm, a functionalized heterocycle, a pH-adjusting agent, and an aqueous carrier, and wherein the pH of the polishing composition is about 1 to about 6. The invention also provides a method of polishing a substrate, especially a substrate comprising a silicon oxide layer, with the polishing composition.
Abstract:
The invention provides a chemical-mechanical polishing composition and a method of chemically-mechanically polishing a sapphire substrate. The composition contains a diamond abrasive and a pH adjuster. The method involves contacting the substrate with a polishing pad and the chemical-mechanical polishing composition, moving the polishing pad and the polishing composition relative to the substrate, and abrading at least a portion of the substrate to polish the substrate.
Abstract:
Disclosed are a chemical-mechanical polishing composition and a method of polishing a substrate. The polishing composition comprises wet-process ceria abrasive particles, (e.g., about 120 nm or less), at least one alcohol amine, at least one surfactant having at least one hydrophilic moiety and at least one hydrophobic moiety, the surfactant having a molecular weight of about 1000, and water, wherein the polishing composition has a pH of about 6. The polishing composition can be used, e.g., to polish any suitable substrate, such as a polysilicon wafer used in the semiconductor industry.
Abstract:
The invention provides a chemical-mechanical polishing composition comprising, consisting essentially of, or consisting of (a) about 0.01 wt. % to about 1 wt. % of wet-process ceria, (b) about 10 ppm to about 200 ppm of a cationic polymer comprising quaternary amino groups, (c) about 10 ppm to about 2000 ppm of a non-fluorinated nonionic surfactant, (d) an amino acid, and (e) water, wherein the polishing composition has a pH of about 3 to about 8. The invention further provides a method of polishing a substrate with the polishing composition.
Abstract:
The invention provides a polishing composition comprising (a) silica, (b) one or more compounds that increases the removal rate of silicon, (c) one or more tetraalkylammonium salts, and (d) water, wherein the polishing composition has a pH of about 7 to about 11. The invention further provides a method of polishing a substrate with the polishing composition.
Abstract:
The invention provides a polishing composition comprising silica, an aminophosphonic acid, a polysaccharide, a tetraalkylammonium salt, a bicarbonate salt, an azole ring, and water, wherein the polishing composition has a pH of about 7 to about 11. The invention further provides a method of polishing a substrate with the polishing composition.
Abstract:
The invention relates to a chemical-mechanical polishing composition comprising a ceria abrasive, cations of one or more lanthanide metals, one or more nonionic polymers, water, and optionally one or more additives. The invention further relates to a method of chemically-mechanically polishing a substrate with the inventive chemical-mechanical polishing composition. Typically, the substrate comprises one or more of silicon oxide, silicon nitride, and polysilicon.
Abstract:
The invention provides a chemical-mechanical polishing composition including first abrasive particles, wherein the first abrasive particles are wet-process ceria particles, have a median particle size of about 40 nm to about 100 nm, are present in the polishing composition at a concentration of about 0.005 wt. % to about 2 wt. %, and have a particle size distribution of at least about 300 nm, a functionalized heterocycle, a pH-adjusting agent, and an aqueous carrier, and wherein the pH of the polishing composition is about 1 to about 6. The invention also provides a method of polishing a substrate, especially a substrate comprising a silicon oxide layer, with the polishing composition.
Abstract:
The invention provides a chemical-mechanical polishing composition including wet-process ceria particles having a median particle size of about 25 nm to about 150 nm and a particle size distribution of about 300 nm or more, and an aqueous carrier. The invention also provides a method of polishing a substrate, especially a substrate comprising a silicon layer, with the polishing composition.