摘要:
A plating apparatus can securely carry out a flattening plating of a substrate to form a plated film having a flat surface without using a costly mechanism, and without applying an extra plating to the substrate. The plating apparatus includes a substrate holder; a cathode section having a seal member for watertightly sealing a peripheral portion of the substrate, and a cathode electrode for supplying an electric current to the substrate; an anode disposed in a position facing the surface of the substrate; a porous member disposed between the anode and the surface of the substrate; a constant-voltage control section for controlling a voltage applied between the cathode electrode and the anode at a constant value; and a current monitor section for monitoring an electric current flowing between the cathode electrode and the anode, and feeding back a detection signal to the constant-voltage control section.
摘要:
Disclosed is a method for making a metal gate for a FET, wherein the metal gate comprises at least some material deposited by electroplating as well as an FET device comprising a metal gate that is at least partially plated. Further disclosed is a method for making a metal gate for a FET wherein the metal gate comprises at least some plated material and the method comprises the steps of: selecting a substrate having a top surface and a recessed region; conformally depositing a thin conductive seed layer on the substrate; and electroplating a filler gate metal on the seed layer to fill and overfill the recessed region.
摘要:
A plating method is capable of mechanically and electrochemically preferentially depositing a plated film in fine interconnect recesses such as trenches and via holes, and depositing the plated film to a flatter surface. The plating method including: disposing a substrate having fine interconnect recesses such that a conductive layer faces an anode; disposing a porous member between the substrate and the anode; filling a plating solution between the substrate and the anode; and repeating a process of holding the conductive layer and the porous member in contact with each other and moving the conductive layer and the porous member relatively to each other, a process of passing an electric current between the conductive layer and the anode while keeping the conductive layer still with respect to the porous member, and a process of stopping the supply of the electric current between the conductive layer and the anode.
摘要:
Disclosed is a method for making a metal gate for a FET, wherein the metal gate comprises at least some material deposited by electroplating as well as an FET device comprising a metal gate that is at least partially plated. Further disclosed is a method for making a metal gate for a FET wherein the metal gate comprises at least some plated material and the method comprises the steps of: selecting a substrate having a top surface and a recessed region; conformally depositing a thin conductive seed layer on the substrate; and electroplating a filler gate metal on the seed layer to fill and overfill the recessed region.
摘要:
A plating method can form a plated film having a uniform thickness over the entire surface, including the peripheral surface, of a substrate. The plating method includes: disposing an anode so as to face a conductive film, formed on a substrate, which serves as a cathode, and disposing an auxiliary cathode on an ring-shaped seal member for sealing a peripheral portion of the substrate; bringing the conductive film, the anode and the auxiliary cathode into contact with a plating solution; and supplying electric currents between the anode and the conductive film, and between the anode and the auxiliary cathode to carry out plating.
摘要:
A contact metallurgy structure comprising a patterned dielectric layer having cavities on a substrate; a silicide or germanide layer such as of cobalt and/or nickel located at the bottom of cavities; a contact layer comprising Ti or Ti/TiN located on top of the dielectric layer and inside the cavities and making contact to the silicide or germanide layer on the bottom; a diffusion barrier layer located on top of the contact layer and inside the cavities; optionally a seed layer for plating located on top of the barrier layer; a metal fill layer in vias is provided along with a method of fabrication. The metal fill layer is electrodeposited with at least one member selected from the group consisting of copper, rhodium, ruthenium, iridium, molybdenum, gold, silver, nickel, cobalt, silver, gold, cadmium and zinc and alloys thereof. When the metal fill layer is rhodium, ruthenium, or iridium, an effective diffusion barrier layer is not required between the fill metal and the dielectric. When the barrier layer is platable, such as ruthenium, rhodium, platinum, or iridium, the seed layer is not required.
摘要:
A method is provided for electroplating a gate metal or other conducting or semiconducting material directly on a dielectric such as a gate dielectric. The method involves selecting a substrate, dielectric layer, and electrolyte solution or melt, wherein the combination of the substrate, dielectric layer, and electrolyte solution or melt allow an electrochemical current to be passed from the substrate through the dielectric layer into the electrolyte solution or melt. Methods are also provided for electrochemical modification of dielectrics utilizing through-dielectric current flow.
摘要:
A conductive material is electroplated onto a platable resistive metal barrier layer(s) employing a plating bath optionally comprising a super filling additive and a suppressor, and by changing the current or voltage as a function of the area of plated metal. A structure is also provided that comprises a substrate, a platable metal barrier layer(s) located on the substrate and a relatively continuous uniform electroplated layer of a conductive material located on the platable resistive metal barrier layer.
摘要:
Patterned copper structures are fabricated by selectively capping the copper employing selective etching and/or selective electroplating in the presence of a liner material. Apparatus for addressing the problem of an increased resistive path as electrolyte during electroetching and/or electroplating flows from the wafer edge inwards is provided.
摘要:
An improved method of stabilizing wet chemical baths is disclosed. Typically such baths are used in processes for treating workpieces, for example, plating processes for plating metal onto substrates. In particular, the present invention relates to copper plating baths. More particularly, the present invention relates to the stability of copper plating baths. More particularly, the present invention relates to prevention of void formation by monitoring the accumulation of deleterious by-products in copper plating baths.