摘要:
A semiconductor device is formed of two or more dice of similar dimensions and bond pad arrangements, in which bond pads are located in fields along less than three edges of the active surface of each die. A first die is attached to a substrate and subsequent die or dice are attached in a vertical sequence atop the first die, each in an offset configuration from the next lower die to expose the bond pads thereof for conductive bonding to metallization of the substrate. The multiple chip device permits a plurality of dice to be stacked in a high-density low-profile device. A particularly useful application is the formation of stacked mass storage flash memory package.
摘要:
A rerouting element for a semiconductor device that includes a dielectric film that carries conductive vias, conductive elements, and contact pads. The conductive vias are positioned at locations that correspond to the locations of bond pads of a semiconductor device with which the rerouting element is to be used. The conductive elements, which communicate with corresponding conductive vias, reroute the bond pad locations to corresponding contact pad locations adjacent to one peripheral edge or two adjacent peripheral edges of the rerouted semiconductor device. The rerouting element is particularly useful for rerouting centrally located bond pads of a semiconductor device, as well as for rerouting the peripheral locations of bond pads of a semiconductor device to one or two adjacent peripheral edges thereof. Methods for designing and using the rerouting element are also disclosed, as are semiconductor device assemblies including one or more rerouting elements.
摘要:
A rerouting element for a semiconductor device includes a substantially planar member that carries at least one contact location, at least one conductive, at least one rerouted bond pad. The contact location is positioned adjacent to a first periphered edge of the substantially planar member and at a location that corresponds to the location of a bond pad of a semiconductor device with which the rerouting element is to be used. The at least one conductive element, which communicates with the at least one contact location, reroutes the bond pad location of the semiconductor device to a corresponding rerouted bond pad location adjacent to a second one peripheral edge of the rerouted substantially planar member which is opposite the first periphered edge. In addition, assemblies including rerouting elements and methods for designing and using rerouting elements are disclosed.
摘要:
A rerouting element for a semiconductor device that includes a dielectric film that carries conductive vias, conductive elements, and contact pads. The conductive vias are positioned at locations that correspond to the locations of bond pads of a semiconductor device with which the rerouting element is to be used. The conductive elements, which communicate with corresponding conductive vias, reroute the bond pad locations to corresponding contact pad locations adjacent to one peripheral edge or two adjacent peripheral edges of the rerouted semiconductor device. The rerouting element is particularly useful for rerouting centrally located bond pads of a semiconductor device, as well as for rerouting the peripheral locations of bond pads of a semiconductor device to one or two adjacent peripheral edges thereof. Methods for designing and using the rerouting element are also disclosed, as are semiconductor device assemblies including one or more rerouting elements.
摘要:
A multi-part lead frame die assembly is disclosed including a die bonded to a die paddle. A second lead frame including leads is superimposed and bonded onto the first lead frame. Also disclosed is a method for fabricating the multi-part lead frame assembly which utilizes equipment designed for single lead frame processing. If desired, the materials for the multi-part lead frame may be dissimilar.
摘要:
A semiconductor integrated circuit device, and method of manufacturing the same, having a conventional-type lead frame with the die paddle removed. In particular, the die paddle is replaced with a section of tape that is supported by the ends of the lead fingers. The semiconductor die is attached to the tape so that it may be wire bonded to the lead fingers. The tape contains at least one slot to allow for expansion and/or contraction of the tape due to various temperatures experienced during the manufacturing process so that the tape does not wrinkle or warp to alter the position of the die.
摘要:
A routing element for use with a multichip module includes a substrate that carries conductive traces that provide either additional electrical paths or shorter electrical paths that those provided by a multichip module substrate. The conductive traces may be carried upon a single surface of the routing element substrate, be carried internally by the routing element substrate, or include externally and internally carried portions. The routing element also includes a contact pad positioned at each end of each conductive trace thereof to facilitate electrical connection of each conductive trace to a corresponding terminal of the substrate or to a corresponding bond pad of a semiconductor device of the multichip module. Multichip modules are also disclosed, as are methods for designing the routing element and methods in which the routing element is used.
摘要:
A gateway or circuit barrier capacitor incorporated in a semiconductor die structure in lieu of a discrete capacitor employed with such a die in a Chip on Board assembly such as a single in-line memory module (SIMM). The capacitor may comprise a single layer with laterally adjacent, dielectrically separated electrode traces, or a more traditional vertically superimposed electrode design with an intervening dielectric layer. The capacitor is preferably formed using the existing fabrication process for the die by altering a photoresist mask to define the electrode traces in the same step as other conductors, such as bond pads, are formed.
摘要:
A stackable fine ball grid array (FBGA) package is disclosed that allows the stacking of one array upon another. This stackable FBGA package is configured such that conductive elements are placed along the outside perimeter of an integrated circuit (IC) device mounted to the FBGA. The conductive elements also are of sufficient size so that they extend beyond the bottom or top surface of the IC device, including the wiring interconnect and encapsulate material, as the conductive elements make contact with the FBGA positioned below or above to form a stack. The IC device, such as a memory chip, is mounted upon a first surface of a printed circuit board substrate forming part of the FBGA. Lead wires are used to attach the IC device to the printed board substrate and encapsulant is used to contain the IC device and wires within and below the matrix and profile of the conductive elements. Additionally, certain pins on the FBGA in the stack require an isolated connection to the PC board. Yet, this isolated connection should be able to be connected to an adjacent ball on a different FBGA stack above or below that particular isolated connection. This provides for a stair step connection from the bottom of the FBGA stacked array to the top. This allows IC devices to be stacked one upon the other while maintaining a unique pin out for each pin required in the stack.