Abstract:
A process for forming cobalt on a substrate, comprising: volatilizing a cobalt precursor of the disclosure, to form, a precursor vapor: and contacting the precursor vapor with the substrate under vapor deposition conditions effective for depositing cobalt on the substrate from the precursor vapor, wherein the vapor deposition conditions include temperature not exceeding 200° C., wherein: the substrate includes copper surface and dielectric material, e.g., ultra-low dielectric material. Such cobalt deposition process can be used to manufacture product articles in which the deposited cobalt forms a capping layer, encapsulating layer, electrode, diffusion layer, or seed for electroplating of metal thereon, e.g., a semiconductor device, flat-panel, display, or solar panel. A cleaning composition containing base and oxidizing agent components may be employed to clean the copper prior to deposition of cobalt thereon, to achieve substantially reduced defects in the deposited cobalt.
Abstract:
A method of forming a dielectric material, comprising doping a zirconium oxide material, using a dopant precursor selected from the group consisting of Ti(NMe2)4; Ti(NMeEt)4; Ti(NEt2)4; TiCl4; tBuN=Nb(NEt2)3; tBuN=Nb(NMe2)3; t-BuN=Nb(NEtMe)3; t-AmN=Nb(NEt2)3; t-AmN=Nb(NEtMe)3; t-AmN=Nb(NMe2)3; t-AmN=Nb(OBu-t)3; Nb-13; Nb(NEt2)4; Nb(NEt2)5; Nb(N(CH3)2)5; Nb(OC2H5)5; Nb(thd)(OPr-i)4; SiH(OMe)3; SiCl4; Si(NMe2)4; (Me3Si)2NH; GeRax(ORb)4-x wherein x is from 0 to 4, each Ra is independently selected from H or C1-C8 alkyl and each Rb is independently selected from C1-C8 alkyl; GeCl4; Ge(NRa2)4 wherein each Ra is independently selected from H and C1-C8 alkyl; and (Rb3Ge)2NH wherein each Rb is independently selected from C1-C8 alkyl; bis(N,N′-diisopropyl-1,3-propanediamide) titanium; and tetrakis(isopropylmethylamido) titanium; wherein Me is methyl, Et is ethyl, Pr-i is isopropyl, t-Bu is tertiary butyl, t-Am is tertiary amyl, and thd is 2,2,6,6-tetramethyl-3,5-heptanedionate. Doped zirconium oxide materials of the present disclosure are usefully employed in ferroelectric capacitors and dynamic random access memory (DRAM) devices.
Abstract:
A tungsten precursor useful for forming tungsten-containing material on a substrate, e.g., in the manufacture of microelectronic devices. The tungsten precursor is devoid of fluorine content, and may be utilized in a solid delivery process or other vapor deposition technique, to form films such as elemental tungsten for metallization of integrated circuits, or tungsten nitride films or other tungsten compound films that are useful as base layers for subsequent elemental tungsten metallization.
Abstract:
A process for forming cobalt on a substrate, comprising: volatilizing a cobalt precursor of the disclosure, to form, a precursor vapor: and contacting the precursor vapor with the substrate under vapor deposition conditions effective for depositing cobalt on the substrate from the precursor vapor, wherein the vapor deposition conditions include temperature not exceeding 200° C., wherein: the substrate includes copper surface and dielectric material, e.g., ultra-low dielectric material. Such cobalt deposition process can be used to manufacture product articles in which the deposited cobalt forms a capping layer, encapsulating layer, electrode, diffusion layer, or seed for electroplating of metal thereon, e.g., a semiconductor device, flat-panel, display, or solar panel. A cleaning composition containing base and oxidizing agent components may be employed to clean the copper prior to deposition of cobalt thereon, to achieve substantially reduced defects in the deposited cobalt.
Abstract:
A full fill trench structure is described, including a microelectronic device substrate having a high aspect ratio trench therein and filled with silicon dioxide of a substantially void-free character and substantially uniform density throughout its bulk mass. A method of manufacturing a semiconductor product also is described, involving use of specific silicon precursor compositions for forming substantially void-free and substantially uniform density silicon dioxide material in the trench. The precursor fill composition may include silicon and germanium, to produce a microelectronic device structure including a GeO2/SiO2 trench fill material. A suppressor component may be employed in the precursor fill composition, to eliminate or minimize seam formation in the cured trench fill material.
Abstract:
Antimony, germanium and tellurium precursors useful for CVD/ALD of corresponding metal-containing thin films are described, along with compositions including such precursors, methods of making such precursors, and films and microelectronic device products manufactured using such precursors, as well as corresponding manufacturing methods. The precursors of the invention are useful for forming germanium-antimony-tellurium (GST) films and microelectronic device products, such as phase change memory devices, including such films.
Abstract:
A full fill trench structure is described, including a microelectronic device substrate having a high aspect ratio trench therein and filled with silicon dioxide of a substantially void-free character and substantially uniform density throughout its bulk mass. A method of manufacturing a semiconductor product also is described, involving use of specific silicon precursor compositions for forming substantially void-free and substantially uniform density silicon dioxide material in the trench. The precursor fill composition may include silicon and germanium, to produce a microelectronic device structure including a GeO2/SiO2 trench fill material. A suppressor component may be employed in the precursor fill composition, to eliminate or minimize seam formation in the cured trench fill material.
Abstract:
A full fill trench structure is described, including a microelectronic device substrate having a high aspect ratio trench therein and filled with silicon dioxide of a substantially void-free character and substantially uniform density throughout its bulk mass. A method of manufacturing a semiconductor product also is described, involving use of specific silicon precursor compositions for forming substantially void-free and substantially uniform density silicon dioxide material in the trench. The precursor fill composition may include silicon and germanium, to produce a microelectronic device structure including a GeO2/SiO2 trench fill material. A suppressor component may be employed in the precursor fill composition, to eliminate or minimize seam formation in the cured trench fill material.
Abstract:
Precursors for use in depositing tellurium-containing films on substrates such as wafers or other microelectronic device substrates, as well as associated processes of making and using such precursors, and source packages of such precursors. The precursors are useful for deposition of Ge2Sb2Te5 chalcogenide thin films in the manufacture of nonvolatile Phase Change Memory (PCM), by deposition techniques such as chemical vapor deposition (CVD) and atomic layer deposition (ALD).