Abstract:
Silicon nano wires having silicon nitride shells and a method of manufacturing the same are provided. Each silicon nano wire has a core portion formed of silicon, and a shell portion formed of silicon nitride surrounding the core portion. The method includes removing silicon oxide formed on the shell of the silicon nano wire and forming a silicon nitride shell.
Abstract:
A thermoelectric device and a method of manufacturing the same are provided. The thermoelectric device may include a nanowire having nanoparticles which are disposed on one of an exterior surface of the nanowire and an interior of the nanowire.
Abstract:
A thermoelectric device includes: a first region; a second region; and a thermoelectric body disposed between the first region and the second region, where the thermoelectric body includes a vacancy.
Abstract:
A light guide plate includes a plurality of quantum dots on at least one of a surface of the light guide plate and inside the light guide plate, wherein the plurality of quantum dots emit light having a different wavelength than a light incident thereto.
Abstract:
A method of manufacturing graphene includes forming a germanium layer on a surface of a substrate, and forming the graphene directly on the germanium layer by supplying carbon-containing gas into a chamber in which the substrate is disposed.
Abstract:
Provided are a porous nanostructure and a method of manufacturing the same. The porous nanostructure includes a plurality of pores disposed on an exterior surface of a nanostructure, wherein at least a portion of the plurality of pores extend inside the nanostructure.
Abstract:
A method of synthesizing a nanowire. The method includes disposing a first oxide layer including germanium (Ge) on a substrate, forming a second oxide layer including a nucleus by annealing the first oxide layer, and growing a nanowire including Ge from the nucleus by a chemical vapor deposition (“CVD”) method.
Abstract:
A graphene structure and a method of forming the same may include a graphene formed in a three-dimensional (3D) shape, e.g., a column shape, a stacking structure, and a three-dimensionally connected structure. The graphene structure can be formed by using Ge.
Abstract:
A graphene-polymer layered composite and a method of manufacturing the same is provided. A graphene-polymer layered composite includes polymer layers surrounding a graphene sheet, and may include numerous polymer layers and graphene sheets in an alternating stacked configuration. The graphene-polymer layered composite has the characteristics of a polymer in that it provides flexibility, ease of manufacturing, low manufacturing costs, and low thermal conductivity. The graphene-polymer layered composite also has the characteristics of graphene in that it has a high electrical conductivity. Due to the low thermal conductivity and high electrical conductivity, the graphene-polymer layered composite may be useful for electrodes, electric devices, and thermoelectric materials.
Abstract:
A thermoelectric material including: a nanostructure; a discontinuous area disposed in the nanostructure, and an uneven portion disposed on the nano structure.