Abstract:
A submount includes a light emitting device mounted thereon. The submount includes: a base including a first surface extending in a first direction and in a second direction that is orthogonal to the first direction; a first electrode extending in the first direction and in the second direction on the first surface, the first electrode including a first end in the second direction, and a second end in opposite direction of the second direction, the second end extending in the first direction; and a second electrode extending in the first direction and in the second direction on the first surface, the second electrode including a third end in the opposite direction of the second direction, the third end being separated from the first end in the second direction with a gap therebetween, and a fourth end in the second direction, the fourth end extending in the first direction. In the second electrode, a second width between the third end and the fourth end in the second direction differs according to a position in the first direction.
Abstract:
A semiconductor laser module includes: a semiconductor laser outputting a laser light from an output-facet side of a waveguide which has a first narrow portion identical in width, a wide portion wider than the first narrow portion, a second narrow portion narrower than the wide portion, a first tapered portion between the first narrow portion and the wide portion and increasing in width toward the wide portion, and a second tapered portion between the wide portion and the second narrow portion and decreasing in width toward the second narrow portion; and an optical fiber to which the laser light is input has an optical-feedback unit reflecting a predetermined wavelength of light. The semiconductor laser is enclosed in a package with one end of the optical fiber. The optical-feedback unit has a first optical-feedback unit set at a predetermined reflection center wavelength determining an oscillation wavelength and a second optical-feedback unit.
Abstract:
A semiconductor-laser-chip-on-submount includes: a semiconductor laser chip that includes a semiconductor portion having an emitting facet and a rear facet along a longitudinal direction and emits laser light from the emitting facet; and a submount where the semiconductor laser chip is mounted. Further, a first distance between the submount and the emitting facet of the semiconductor portion is less than a second distance between the submount and the rear facet of the semiconductor portion.
Abstract:
A semiconductor laser outputs a laser light from an output facet of a waveguide having an index waveguide structure, via a lens system. The waveguide includes, in order from a rear facet opposite to the output facet, a first narrow portion, a wide portion that is wider than the first narrow portion, a second narrow portion narrower than the wide portion, a first tapered portion formed between the first narrow portion and the wide portion, which expands toward the wide portion, and a second tapered portion formed between the wide portion and the second narrow portion, which narrows toward the second narrow portion. Each of the first narrow portion, the wide portion, and the second narrow portion has a uniform width.
Abstract:
A semiconductor laser device includes a semiconductor layer portion having an active layer and performs multi-mode oscillation of laser light. Further, the semiconductor layer portion includes first and second regions, the second region being located closer to a facet on a laser light radiation side than the first region, the first region and the second region include a stripe region in which the laser light is guided, and an optical confinement effect of the laser light to the stripe region in a horizontal direction in the second region is less than that in the first region.
Abstract:
To achieve stable multimode output even when driven by a drive current near a threshold value, provided is a laser apparatus comprising a semiconductor laser element; a wavelength selecting element that performs laser oscillation by forming a resonator between itself and a reflective surface of the semiconductor laser element to output oscillated laser light; and an optical system that is optically coupled to an emission surface of the semiconductor laser element with a coupling efficiency η and inputs to the wavelength selecting element light output from the emission surface. The optical system causes a value that is correlated with a minimum light output within a linear light output region in which light output is linear with respect to an injection current injected to the semiconductor laser element to be less than this value occurring when the coupling efficiency η is at a maximum.
Abstract:
A laser apparatus includes light source elements outputting laser beams; a wavelength-selecting element disposed in an optical path of each of the laser beams and configured to cause light in a predetermined wavelength band to selectively transmit therethrough; and a partially transmissive-reflector that receives the light transmitted through the wavelength-selecting element, reflects a part of the input light toward the wavelength-selecting element, and causes its remainder to transmit therethrough. The wavelength-selecting element causes a part of the respective laser beams output from the respective light source elements to selectively transmit therethrough, the partially transmissive-reflector reflects a part of the respective transmitted laser beams, and the wavelength-selecting element causes a part of the respective reflected laser beams to transmit to return to the light source elements, and each of the light source elements preferentially oscillates at a wavelength of the laser beam that transmits through the wavelength-selecting element.
Abstract:
Provided is a semiconductor light device comprising a semiconductor substrate having a first conduction type; a first cladding layer having the first conduction type deposited above the semiconductor substrate; an active layer; a second cladding layer having a second conduction type; and a contact layer. The active layer includes a window portion that is disordered via diffusion of vacancies and a non-window portion having less disordering than the window portion, and the contact layer includes a first region and a second region that is below the first region and has greater affinity for hydrogen than the first region.
Abstract:
A semiconductor laser device includes: a layered structure in which a first conductivity type cladding layer, an active layer, a second conductivity type cladding layer, and a contact layer are layered in a first direction, the layered structure including a facet in a second direction intersecting the first direction, the facet outputting laser light, a non-window region, and a window region, the window region having a bandgap larger than a bandgap of the non-window region; a first electrode electrically connected to the first conductivity type cladding layer; a second electrode that is formed on the contact layer and constitutes a current path through the layered structure with the first electrode; a passivation layer formed on the facet and having a bandgap larger than the bandgap of the window region; and a dielectric reflecting coating configured to cover an opposite side of the passivation layer from the facet.
Abstract:
An electrode comprising a Ti layer and a Pt layer that are sequentially laid on a surface of a p-type semiconductor layer. Further, a thermal impedance per unit area of a contact portion that is in contact with the surface of the p-type semiconductor layer is equal to or smaller than 1.2×104 K/W·m2.