Abstract:
A semiconductor light emitting device includes a lower cladding layer, an active layer, and an AlGaAs upper cladding layer mounted on a GaAs substrate. The semiconductor light emitting device has a ridge structure including the AlGaAs upper cladding layer. The semiconductor light emitting device further includes an InGaAs etching stop layer provided in contact with the lower side of the AlGaAs upper cladding layer. The InGaAs etching stop layer has a band gap greater than that of the active layer.
Abstract:
A semiconductor light source includes a substrate, an optical waveguide having a reflection structure provided on the substrate with an oxide film in between and a semiconductor light emitting element provided on the optical waveguide. The optical waveguide includes a constant width core layer portion located in a center portion, tapered core layer portions that are provided on either side of the constant width core layer and of which the core width gradually increases and a constant width core layer portion for an optical wire waveguide. The semiconductor light emitting element is placed so as to cover at least a portion of the tapered core layer portions on both sides.
Abstract:
A method for manufacturing a semiconductor light emitting device includes forming a lower cladding layer over a GaAs substrate; forming a quantum dot active layer over the lower cladding layer; forming a first semiconductor layer over the quantum dot active layer; forming a diffraction grating by etching the first semiconductor layer; forming a second semiconductor layer burying the diffraction grating; and forming an upper cladding layer having a conductive type different from that of the lower cladding layer over the second semiconductor layer, wherein the processes after forming the quantum dot active layer are performed at a temperature not thermally deteriorating or degrading quantum dots included in the quantum dot active layer.
Abstract:
A semiconductor light emitting device includes a lower cladding layer, an active layer, and an AlGaAs upper cladding layer mounted on a GaAs substrate. The semiconductor light emitting device has a ridge structure including the AlGaAs upper cladding layer. The semiconductor light emitting device further includes an InGaAs etching stop layer provided in contact with the lower side of the AlGaAs upper cladding layer. The InGaAs etching stop layer has a band gap greater than that of the active layer.
Abstract:
A method for manufacturing a semiconductor light emitting device includes forming a lower cladding layer over a GaAs substrate; forming a quantum dot active layer over the lower cladding layer; forming a first semiconductor layer over the quantum dot active layer; forming a diffraction grating by etching the first semiconductor layer; forming a second semiconductor layer burying the diffraction grating; and forming an upper cladding layer having a conductive type different from that of the lower cladding layer over the second semiconductor layer, wherein the processes after forming the quantum dot active layer are performed at a temperature not thermally deteriorating or degrading quantum dots included in the quantum dot active layer.
Abstract:
A semiconductor light source includes a substrate, an optical waveguide having a reflection structure provided on the substrate with an oxide film in between and a semiconductor light emitting element provided on the optical waveguide. The optical waveguide includes a constant width core layer portion located in a center portion, tapered core layer portions that are provided on either side of the constant width core layer and of which the core width gradually increases and a constant width core layer portion for an optical wire waveguide. The semiconductor light emitting element is placed so as to cover at least a portion of the tapered core layer portions on both sides.
Abstract:
A photodetector including a substrate, a light absorption layer arranged over the substrate, the light absorption layer including a stack including a semiconductor layer that absorbs light of a wavelength having an electric field vector parallel to a normal direction of a substrate surface, a lower contact layer arranged on a first side of the light absorption layer, a lower electrode contacting with the lower contact layer, an upper contact layer arranged on a second side of the light absorption layer, and an upper electrode contacting with the upper contact layer. An uneven structure including polarization-selective shapes of projections or depressions on the second side of the upper contact layer is provided, the shapes of projections or depressions each having a size of a wavelength or less of incident light in the semiconductor layer and half the wavelength or greater and being periodically arranged in at least one direction.
Abstract:
A photoelectric conversion element includes a superlattice semiconductor layer including barrier sub-layers and quantum sub-layers (quantum dot sub-layers) alternately stacked and also includes a wavelength conversion layer containing a wavelength conversion material converting the wavelength of incident light. The wavelength conversion layer converts incident light into light with a wavelength corresponding to an optical transition from a quantum level of the conduction band of the superlattice semiconductor layer to a continuum level of the conduction band.
Abstract:
A semiconductor laser device with a quantum-dot structure allowing for improvement of its high-temperature operation characteristics is provided. The semiconductor laser device has an active-layer structure including one or more active layers. Each active layer has a quantum-dot structure. The quantum-dot structure includes: an island-shaped crystal; a lateral potential barrier layer that at least partially embeds the perimeter of the island-shaped crystal; and an upper crystal layer that covers both an upper end part of the island-shaped crystal and the lateral potential barrier layer. A first bandgap of the lateral potential barrier layer is larger than a second bandgap of the upper crystal layer.
Abstract:
A photoelectric conversion element includes a buffer layer, a BSF layer, a base layer, a photoelectric conversion layer, an emitter layer, a window layer, a contact layer, and a p-type electrode sequentially on one surface of a substrate, and includes an n-type electrode on the other surface of the substrate. The photoelectric conversion layer has at least one quantum dot layer. The at least one quantum dot layer includes a quantum dot and a barrier layer. A photoelectric conversion member including the buffer layer, the BSF layer, the base layer, the photoelectric conversion layer, the emitter layer, the window layer, and the contact layer has an edge of incidence that receives light in an oblique direction relative to the growth direction of the quantum dot. A concentrator concentrates sunlight and causes the concentrated sunlight to enter the photoelectric conversion member from the edge of incidence.