摘要:
Embodiments related to the cleaning of interface surfaces in a semiconductor wafer fabrication process via remote plasma processing are disclosed herein. For example, in one disclosed embodiment, a semiconductor processing apparatus comprises a processing chamber, a load lock coupled to the processing chamber via a transfer port, a wafer pedestal disposed in the load lock and configured to support a wafer in the load lock, and a remote plasma source configured to provide a remote plasma to the load lock.
摘要:
Embodiments related to the cleaning of interface surfaces in a semiconductor wafer fabrication process via remote plasma processing are disclosed herein. For example, in one disclosed embodiment, a semiconductor processing apparatus comprises a processing chamber, a load lock coupled to the processing chamber via a transfer port, a wafer pedestal disposed in the load lock and configured to support a wafer in the load lock, a remote plasma source configured to provide a remote plasma to the load lock, and an ion filter disposed between the remote plasma source and the wafer pedestal.
摘要:
Embodiments related to the cleaning of interface surfaces in a semiconductor wafer fabrication process via remote plasma processing are disclosed herein. For example, in one disclosed embodiment, a semiconductor processing apparatus includes a processing chamber, a load lock coupled to the processing chamber via a transfer port, a wafer pedestal disposed in the load lock and configured to support a wafer in the load lock, a remote plasma source configured to provide a remote plasma to the load lock, and an ion filter disposed between the remote plasma source and the wafer pedestal.
摘要:
Embodiments related to the cleaning of interface surfaces in a semiconductor wafer fabrication process via remote plasma processing are disclosed herein. For example, in one disclosed embodiment, a semiconductor processing apparatus includes a processing chamber, a load lock coupled to the processing chamber via a transfer port, a wafer pedestal disposed in the load lock and configured to support a wafer in the load lock, a remote plasma source configured to provide a remote plasma to the load lock, and an ion filter disposed between the remote plasma source and the wafer pedestal.
摘要:
Embodiments related to the cleaning of interface surfaces in a semiconductor wafer fabrication process via remote plasma processing are disclosed herein. For example, in one disclosed embodiment, a semiconductor processing apparatus comprises a processing chamber, a load lock coupled to the processing chamber via a transfer port, a wafer pedestal disposed in the load lock and configured to support a wafer in the load lock, a remote plasma source configured to provide a remote plasma to the load lock, and an ion filter disposed between the remote plasma source and the wafer pedestal.
摘要:
Protective caps residing at an interface between metal lines and dielectric diffusion barrier (or etch stop) layers are used to improve electromigration performance of interconnects. Protective caps are formed by depositing a source layer of dopant-generating material (e.g., material generating B, Al, Ti, etc.) over an exposed copper line, converting the upper portion of the source layer to a passivated layer (e.g., nitride or oxide) while allowing an unmodified portion of a dopant-generating source layer to remain in contact with copper, and, subsequently, allowing the dopant from the unmodified portion of source layer to controllably diffuse into and/or react with copper, thereby forming a thin protective cap within copper line. The cap may contain a solid solution or an alloy of copper with the dopant.
摘要:
Protective caps residing at an interface between metal lines and dielectric diffusion barrier (or etch stop) layers are used to improve electromigration performance of interconnects. Protective caps are formed by depositing a source layer of dopant-generating material (e.g., material generating B, Al, Ti, etc.) over an exposed copper line, converting the upper portion of the source layer to a passivated layer (e.g., nitride or oxide) while allowing an unmodified portion of a dopant-generating source layer to remain in contact with copper, and, subsequently, allowing the dopant from the unmodified portion of source layer to controllably diffuse into and/or react with copper, thereby forming a thin protective cap within copper line. The cap may contain a solid solution or an alloy of copper with the dopant.
摘要:
Protective caps residing at an interface between metal lines and dielectric diffusion barrier (or etch stop) layers are used to improve electromigration performance of interconnects. Protective caps are formed by depositing a first layer of aluminum-containing material over an exposed copper line by treating an oxide-free copper surface with an organoaluminum compound in an absence of plasma at a substrate temperature of at least about 350° C. The formed aluminum-containing layer is passivated either partially or completely in a chemical conversion which forms Al—N, Al—O or both Al—O and Al—N bonds in the layer. Passivation is performed in some embodiments by contacting the substrate having an exposed first layer with an oxygen-containing reactant and/or nitrogen-containing reactant in the absence of plasma. Protective caps can be formed on substrates comprising exposed ULK dielectric. The aluminum-containing layer residing on the dielectric portion will typically spontaneously form non-conductive layer comprising Al—O bonds.
摘要:
Transistor architectures and fabrication processes generate channel strain without adversely impacting the efficiency of the transistor fabrication process while preserving the material quality and enhancing the performance of the resulting transistor. Transistor strain is generated is PMOS devices using a highly compressive post-salicide amorphous carbon capping layer applied as a blanket over on at least the source and drain regions. The stress from this capping layer is uniaxially transferred to the PMOS channel through the source-drain regions to create compressive strain in PMOS channel.
摘要:
Transistor architectures and fabrication processes generate channel strain without adversely impacting the efficiency of the transistor fabrication process while preserving the material quality and enhancing the performance of the resulting transistor. Transistor strain is generated is PMOS devices using a highly compressive post-salicide boron doped carbon capping layer applied as a blanket over on at least the source and drain regions. The stress from this capping layer is uniaxially transferred to the PMOS channel through the source-drain regions to create compressive strain in PMOS channel.