Abstract:
An electrostatic discharge protection circuit is disclosed. A method of manufacturing a semiconductor structure includes forming a semiconductor controlled rectifier including a first plurality of fingers between an n-well body contact and an anode in an n-well, and a second plurality of fingers between a p-well body contact and a cathode in a p-well.
Abstract:
Methods to fabricate a stacked nanowire field effect transistor (FET) with reduced gate resistance are provided. The nanowire stack in the stacked nanowire FET can be provided by first forming a material stack of alternating sacrificial material layers and nanowire material layer. The sacrificial material layers and selected nanowire material layers in the material stack are subsequently removed to increase a vertical distance between two active nanowire material layers.
Abstract:
Aspects of the disclosure provide a multi-gate field effect transistor (FET) formed on a bulk substrate that includes an isolated fin and methods of forming the same. In one embodiment, the multi-gate FET includes: a plurality of silicon fin structures formed on the bulk substrate, each silicon fin structure including a body region, a source region, and a drain region; wherein a bottom portion the body region of each silicon fin structure includes a tipped shape to isolate the body region from the bulk substrate, and wherein the plurality of silicon fin structures are attached to the bulk substrate via at least a portion of the source region, or at least a portion of the drain region, or both.
Abstract:
Device structures, design structures, and fabrication methods for a metal-oxide-semiconductor field-effect transistor. A gate structure is formed on a top surface of a substrate. First and second trenches are formed in the substrate adjacent to a sidewall of the gate structure. The second trench is formed laterally between the first trench and the first sidewall. First and second epitaxial layers are respectively formed in the first and second trenches. A contact is formed to the first epitaxial layer, which serves as a drain. The second epitaxial layer in the second trench is not contacted so that the second epitaxial layer serves as a ballasting resistor.
Abstract:
Device structures and design structures for passive devices that may be used as electrostatic discharge protection devices in fin-type field-effect transistor integrated circuit technologies. A device region is formed in a trench and is coupled with a handle wafer of a semiconductor-on-insulator substrate. The device region extends through a buried insulator layer of the semiconductor-on-insulator substrate toward a top surface of a device layer of the semiconductor-on-insulator substrate. The device region is comprised of lightly-doped semiconductor material. The device structure further includes a doped region formed in the device region and that defines a junction. A portion of the device region is laterally positioned between the doped region and the buried insulator layer of the semiconductor-on-insulator substrate. Another region of the device layer may be patterned to form fins for fin-type field-effect transistors.
Abstract:
Circuits and methods for providing electrostatic discharge protection. The protection circuit may include a power clamp device, a timing circuit including a resistor and a capacitor that is coupled with the resistor at a node, a transmission gate configured to selectively connect the node of the timing circuit with the power clamp device, and a control circuit coupled with the node. The control circuit is configured to control the transmission gate based upon whether or not the capacitor is defective. The timing circuit may be deactivated if the capacitor in the timing circuit is defective and the associated chip is powered. Alternatively, the timing circuit may be activated if the capacitor in the timing circuit is not defective.
Abstract:
Aspects of the disclosure provide a multi-gate field effect transistor (FET) formed on a bulk substrate that includes an isolated fin and methods of forming the same. In one embodiment, the multi-gate FET includes: a plurality of silicon fin structures formed on the bulk substrate, each silicon fin structure including a body region, a source region, and a drain region; wherein a bottom portion the body region of each silicon fin structure includes a tipped shape to isolate the body region from the bulk substrate, and wherein the plurality of silicon fin structures are attached to the bulk substrate via at least a portion of the source region, or at least a portion of the drain region, or both.
Abstract:
Disclosed are semiconductor structures. Each semiconductor structure can comprise a substrate and at least one laterally double-diffused metal oxide semiconductor field effect transistor (LDMOSFET) on the substrate. Each LDMOSFET can have a fully-depleted deep drain drift region (i.e., a fully depleted deep ballast resistor region) for providing a relatively high blocking voltage. Different configurations for the drain drift regions are disclosed and these different configurations can also vary as a function of the conductivity type of the LDMOSFET. Additionally, each semiconductor structure can comprise an isolation band positioned below the LDMOSFET and an isolation well positioned laterally around the LDMOSFET and extending vertically to the isolation band such that the LDMOSFET is electrically isolated from both a lower portion of the substrate and any adjacent devices on the substrate.
Abstract:
A system and method sorts integrated circuit devices. Integrated circuit devices are manufactured on a wafer according to an integrated circuit design using manufacturing equipment. The design produces integrated circuit devices that are identically designed and perform differently based on manufacturing process variations. The integrated circuit devices are for use in a range of environmental conditions, when placed in service. Testing is performed on the integrated circuit devices. Environmental maximums are individually predicted for each device. The environmental maximums comprise ones of the environmental conditions that must not be exceeded for each device to perform above a given failure rate. Each integrated circuit device is assigned at least one of a plurality of grades based on the environmental maximums predicted for each device. The integrated circuit devices are provided to different forms of service having different ones of the environmental conditions based on the grades assigned to each device.
Abstract:
Circuits and methods of fabricating circuits that provide electrostatic discharge protection, as well as methods of protecting an integrated circuit from electrostatic discharge. The protection circuit may include a power clamp device, a timing circuit including a resistor and a capacitor that is coupled with the resistor at a node, and a power clamp device coupled with the timing circuit at the node. The capacitor includes a plurality of capacitor elements. The protection circuit further includes a plurality of electronic fuses. Each electronic fuse is coupled with a respective one of the capacitor elements. A field effect transistor may be coupled in parallel with the resistor of the timing circuit, and may be used to bypass the resistor to provide a programming current to any electronic fuse coupled with a capacitor element of abnormally low impedance.