Abstract:
Methods and apparatus for joining a chip with a substrate. The chip is moved by with a pick-and-place machine from a first location to a second location proximate to the substrate over a first time. In response to moving the chip in a motion path from the first location to the second location, a plurality of solder bumps carried on the chip are liquefied over a second time that is less than the first time. While the solder bumps are liquefied, the chip is placed by the pick-and-place machine onto the substrate.
Abstract:
Methods and apparatus for joining a chip with a substrate. The chip is moved by with a pick-and-place machine from a first location to a second location proximate to the substrate over a first time. In response to moving the chip in a motion path from the first location to the second location, a plurality of solder bumps carried on the chip are liquefied over a second time that is less than the first time. While the solder bumps are liquefied, the chip is placed by the pick-and-place machine onto the substrate.
Abstract:
Underfill materials and methods for removing an underfill material from beneath a chip in relation to removal of the chip from a substrate. The underfill material may a plurality of particles dispersed in a bulk matrix. The material constituting the particles may be capable of generating heat energy when exposed to a time-varying magnetic field. The bulk matrix of the underfill material between the chip and a substrate may be heated with heat energy transferred from the particles. While heated, the underfill material is removed. The heating of the underfill material may also be used to heat solder bumps connecting the chip with the substrate so that the solder bumps are liquefied.
Abstract:
Methods and structures provide an electrostatic discharge (ESD) indicator including an electric field sensitive material configured to undergo a specific color change in response to an electric field. An exposure of the structure to an ESD can be visually determined via the specific color change of the ESD indicator.
Abstract:
Methods and structures provide an electrostatic discharge (ESD) indicator including an electric field sensitive material configured to undergo a specific color change in response to an electric field. An exposure of the structure to an ESD can be visually determined via the specific color change of the ESD indicator.
Abstract:
Methods and apparatus for joining a chip with a substrate. The chip is moved by with a pick-and-place machine from a first location to a second location proximate to the substrate over a first time. In response to moving the chip in a motion path from the first location to the second location, a plurality of solder bumps carried on the chip are liquefied over a second time that is less than the first time. While the solder bumps are liquefied, the chip is placed by the pick-and-place machine onto the substrate.
Abstract:
An approach for detecting sudden changes in acceleration in a semiconductor device or semiconductor package containing the semiconductor device is disclosed. In one embodiment, a piezoelectric sensor is embedded in a semiconductor die. The piezoelectric sensor is configured to sense a mechanical force applied to the semiconductor die. An excessive force indicator is coupled to the piezoelectric sensor. The excessive force indicator is configured to generate an excessive force indication in response to the piezoelectric sensor sensing that the mechanical force applied to the semiconductor die has exceeded a predetermined threshold indicative of an excessive mechanical force.
Abstract:
Underfill materials and methods for removing an underfill material from beneath a chip in relation to removal of the chip from a substrate. The underfill material may a plurality of particles dispersed in a bulk matrix. The material constituting the particles may be capable of generating heat energy when exposed to a time-varying magnetic field. The bulk matrix of the underfill material between the chip and a substrate may be heated with heat energy transferred from the particles. While heated, the underfill material is removed. The heating of the underfill material may also be used to heat solder bumps connecting the chip with the substrate so that the solder bumps are liquefied.
Abstract:
Embodiments of the present disclosure provide an integrated circuit (IC) structure with a recessed solder bump area, and methods of forming the same. An IC structure according to embodiments of the present disclosure can include: a semiconductor material, wherein an upper surface of the semiconductor material includes a non-recessed area and a recessed area laterally separated from each other, the recessed area of the upper surface being shaped to receive a solder bump therein; at least one first through-semiconductor via (TSV) positioned within the semiconductor material and including an upper surface protruding from the recessed area of the semiconductor material; and a metal layer formed over the recessed area and electrically connected to the at least one first TSV.