摘要:
Improved processing methods for enhanced properties of conjugated polymer films are disclosed, as well as the enhanced conjugated polymer films produced thereby. Addition of low molecular weight alkyl-containing molecules to solutions used to form conjugated polymer films leads to improved photoconductivity and improvements in other electronic properties. The enhanced conjugated polymer films can be used in a variety of electronic devices, such as solar cells and photodiodes.
摘要:
Improved processing methods for enhanced properties of conjugated polymer films are disclosed, as well as the enhanced conjugated polymer films produced thereby. Addition of low molecular weight alkyl-containing molecules to solutions used to form conjugated polymer films leads to improved photoconductivity and improvements in other electronic properties. The enhanced conjugated polymer films can be used in a variety of electronic devices, such as solar cells and photodiodes.
摘要:
Embodiments of the invention provide a method for direct heteroepitaxial growth of vertical III-V semiconductor nanowires on a silicon substrate. The silicon substrate is etched to substantially completely remove native oxide. It is promptly placed in a reaction chamber. The substrate is heated and maintained at a growth temperature. Group III-V precursors are flowed for a growth time. Preferred embodiment vertical Group III-V nanowires on silicon have a core-shell structure, which provides a radial homojunction or heterojunction. A doped nanowire core is surrounded by a shell with complementary doping. Such can provide high optical absorption due to the long optical path in the axial direction of the vertical nanowires, while reducing considerably the distance over which carriers must diffuse before being collected in the radial direction. Alloy composition can also be varied. Radial and axial homojunctions and heterojunctions can be realized. Embodiments provide for flexible Group III-V nanowire structures. An array of Group III-V nanowire structures is embedded in polymer. A fabrication method forms the vertical nanowires on a substrate, e.g., a silicon substrate. Preferably, the nanowires are formed by the preferred methods for fabrication of Group III-V nanowires on silicon. Devices can be formed with core/shell and core/multi-shell nanowires and the devices are released from the substrate upon which the nanowires were formed to create a flexible structure that includes an array of vertical nanowires embedded in polymer.
摘要:
Embodiments of the invention provide a method for direct heteroepitaxial growth of vertical III-V semiconductor nanowires on a silicon substrate. The silicon substrate is etched to substantially completely remove native oxide. It is promptly placed in a reaction chamber. The substrate is heated and maintained at a growth temperature. Group III-V precursors are flowed for a growth time. Preferred embodiment vertical Group III-V nanowires on silicon have a core-shell structure, which provides a radial homojunction or heterojunction. A doped nanowire core is surrounded by a shell with complementary doping. Such can provide high optical absorption due to the long optical path in the axial direction of the vertical nanowires, while reducing considerably the distance over which carriers must diffuse before being collected in the radial direction. Alloy composition can also be varied. Radial and axial homojunctions and heterojunctions can be realized. Embodiments provide for flexible Group III-V nanowire structures. An array of Group III-V nanowire structures is embedded in polymer. A fabrication method forms the vertical nanowires on a substrate, e.g., a silicon substrate. Preferably, the nanowires are formed by the preferred methods for fabrication of Group III-V nanowires on silicon. Devices can be formed with core/shell and core/multi-shell nanowires and the devices are released from the substrate upon which the nanowires were formed to create a flexible structure that includes an array of vertical nanowires embedded in polymer.
摘要:
Semiconductor nanowire arrays are used to replace the conventional planar layered construction for fabrication of LEDs and laser diodes. The nanowire arrays are formed from III-V or II-VI compound semiconductors on a conducting substrate. For fabrication of the device, an electrode layer is deposited on the substrate, a core material of one of a p-type and n-type compound semiconductor material is formed on top of the electrode as a planar base with a plurality of nanowires extending substantially vertically therefrom. A shell material of the other of the p-type and n-type compound semiconductor material is formed over an outer surface of the core material so that a p-n junction is formed across the planar base and over each of the plurality of nanowires. An electrode coating is formed an outer surface of the shell material for providing electrical contact to a current source. Heterostructures and superlattices grown along the lengths of the nanowires allow the confinement of photons in the quantum well to enhance the efficiency and as well as color tuning.
摘要:
Semiconductor nanowire arrays are used to replace the conventional planar layered construction for fabrication of LEDs and laser diodes. The nanowire arrays are formed from III-V or II-VI compound semiconductors on a conducting substrate. For fabrication of the device, an electrode layer is deposited on the substrate, a core material of one of a p-type and n-type compound semiconductor material is formed on top of the electrode as a planar base with a plurality of nanowires extending substantially vertically therefrom. A shell material of the other of the p-type and n-type compound semiconductor material is formed over an outer surface of the core material so that a p-n junction is formed across the planar base and over each of the plurality of nanowires. An electrode coating is formed an outer surface of the shell material for providing electrical contact to a current source. Heterostructures and superlattices grown along the lengths of the nanowires allow the confinement of photons in the quantum well to enhance the efficiency and as well as color tuning.
摘要:
A 1D nanowire photodetector device includes a nanowire that is individually contacted by electrodes for applying a longitudinal electric field which drives the photocurrent. An intrinsic radial electric field to inhibits photo-carrier recombination, thus enhancing the photocurrent response. Circuits of 1D nanowire include groups of photodetectors addressed by their individual 1D nanowire electrode contacts. Placement of 1D nanostructures is accomplished with registration onto a substrate. A substrate is patterned with a material, e.g., photoresist, and trenches are formed in the patterning material at predetermined locations for the placement of 1D nanostructures. The 1D nanostructures are aligned in a liquid suspension, and then transferred into the trenches from the liquid suspension. Removal of the patterning material places the 1D nanostructures in predetermined, registered positions on the substrate.
摘要:
A practical ID nanowire photodetector with high gain that can be controlled by a radial electric field established in the ID nanowire. A ID nanowire photodetector device of the invention includes a nanowire that is individually contacted by electrodes for applying a longitudinal electric field which drives the photocurrent. An intrinsic radial electric field to the nanowire inhibits photo-carrier recombination, thus enhancing the photocurrent response. The invention further provides circuits of ID nanowire photodetectors, with groups of photodetectors addressed by their individual ID nanowires electrode contacts. The invention also provides a method for placement of ID nanostructures, including nanowires, with registration onto a substrate. A substrate is patterned with a material, e.g., photoresist, and trenches are formed in the patterning material at predetermined locations for the placement of ID nanostructures. The ID nanostructures are aligned in a liquid suspension, and then transferred into the trenches from the liquid suspension. Removal of the patterning material places the ID nanostructures in predetermined, registered positions on the substrate.