摘要:
A semiconductor micro-electromechanical system (MEMS) switch provided with noble metal contacts that act as an oxygen barrier to copper electrodes is described. The MEMS switch is fully integrated into a CMOS semiconductor fabrication line. The integration techniques, materials and processes are fully compatible with copper chip metallization processes and are typically, a low cost and a low temperature process (below 400° C.). The MEMS switch includes: a movable beam within a cavity, the movable beam being anchored to a wall of the cavity at one or both ends of the beam; a first electrode embedded in the movable beam; and a second electrode embedded in an wall of the cavity and facing the first electrode, wherein the first and second electrodes are respectively capped by the noble metal contact.
摘要:
A semiconductor micro-electromechanical system (MEMS) switch provided with noble metal contacts that act as an oxygen barrier to copper electrodes is described. The MEMS switch is fully integrated into a CMOS semiconductor fabrication line. The integration techniques, materials and processes are fully compatible with copper chip metallization processes and are typically, a low cost and a low temperature process (below 400° C.). The MEMS switch includes: a movable beam within a cavity, the movable beam being anchored to a wall of the cavity at one or both ends of the beam; a first electrode embedded in the movable beam; and a second electrode embedded in an wall of the cavity and facing the first electrode, wherein the first and second electrodes are respectively capped by the noble metal contact.
摘要:
A method of forming an inductor. The method including: (a) forming a dielectric layer on a top surface of a substrate; after (a), (b) forming a lower trench in the dielectric layer; after (b), (c) forming a resist layer on a top surface of the dielectric layer; after (c), (d) forming an upper trench in the resist layer, the upper trench aligned to the lower trench, a bottom of the upper trench open to the lower trench; and after (d), (e) completely filling the lower trench and at least partially filling the upper trench with a conductor in order to form the inductor.
摘要:
A method of forming an inductor. The method including: (a) forming a dielectric layer on a top surface of a substrate; after (a), (b) forming a lower trench in the dielectric layer; after (b), (c) forming a resist layer on a top surface of the dielectric layer; after (c), (d) forming an upper trench in the resist layer, the upper trench aligned to the lower trench, a bottom of the upper trench open to the lower trench; and after (d), (e) completely filling the lower trench and at least partially filling the upper trench with a conductor in order to form the inductor.
摘要:
An inductor and a method of forming and the inductor, the method including: (a) providing a semiconductor substrate; (b) forming a dielectric layer on a top surface of the substrate; (c) forming a lower trench in the dielectric layer; (d) forming a resist layer on a top surface of the dielectric layer; (e) forming an upper trench in the resist layer, the upper trench aligned to the lower trench, a bottom of the upper trench open to the lower trench; and (f) completely filling the lower trench at least partially filling the upper trench with a conductor in order to form the inductor. The inductor including a top surface, a bottom surface and sidewalls, a lower portion of said inductor extending a fixed distance into a dielectric layer formed on a semiconductor substrate and an upper portion extending above said dielectric layer; and means to electrically contact said inductor.
摘要:
A method of forming an inductor. The method includes: forming a dielectric layer on a substrate; forming a lower trench in the dielectric layer; forming a liner in the lower trench and on the dielectric layer; forming a Cu seed layer over the liner; forming a resist layer on the Cu seed layer; forming an upper trench in the resist layer; electroplating Cu to completely fill the lower trench and at least partially fill the upper trench; removing the resist layer; selectively forming a passivation layer on all exposed Cu surfaces; selectively removing the Cu seed layer from regions of the liner; and removing the thus exposed regions of the liner from the dielectric layer, wherein a top surface of the inductor extends above a top surface of the dielectric layer, the passivation layer remaining on regions of sidewalls of the inductor above the top surface of the dielectric layer.
摘要:
The present invention provides multiple test structures for performing reliability and qualification tests on MEMS switch devices. A Test structure for contact and gap characteristic measurements is employed having a serpentine layout simulates rows of upper and lower actuation electrodes. A cascaded switch chain test is used to monitor process defects with large sample sizes. A ring oscillator is used to measure switch speed and switch lifetime. A resistor ladder test structure is configured having each resistor in series with a switch to be tested, and having each switch-resistor pair electrically connected in parallel. Serial/parallel test structures are proposed with MEMS switches working in tandem with switches of established technology. A shift register is used to monitor the open and close state of the MEMS switches. Pull-in voltage, drop-out voltage, activation leakage current, and switch lifetime measurements are performed using the shift register.
摘要:
A micro-electro mechanical switch having a restoring force sufficiently large to overcome stiction is described. The switch is provided with a deflectable conductive beam and multiple electrodes coated with an elastically deformable conductive layer. A restoring force which is initially generated by a single spring constant k0 upon the application of a control voltage between the deflectable beam and a control electrode coplanar to the contact electrodes is supplemented by adding to k0 additional spring constants k1, . . . , kn provided by the deformable layers, once the switch nears closure and the layers compress. In another embodiment, deformable, spring-like elements are used in lieu of the deformable layers. In an additional embodiment, the compressible layers or deformable spring-like elements are affixed to the deflecting beam facing the switch electrodes
摘要:
A method is described for fabricating an encapsulated metal structure in a feature formed in a substrate. The sidewalls and bottom of the feature are covered by a barrier layer and the feature is filled with metal, preferably by electroplating. A recess is formed in the metal, and an additional barrier layer is deposited, covering the top surface of the metal and contacting the first barrier layer. The additional barrier layer is planarized, preferably by chemical-mechanical polishing. The method may be used in fabricating a MIM capacitor, with the encapsulated metal structure serving as the lower plate of the capacitor. A second substrate layer is deposited on the top surface of the substrate, with an opening overlying the encapsulated metal structure. A dielectric layer is deposited in the opening, covering the encapsulated metal structure at the bottom thereof. An additional layer, serving as the upper plate of the capacitor, is deposited to cover the dielectric layer and to fill the opening. The dielectric layer and the additional layer are planarized, preferably by CMP.
摘要:
A method is described for fabricating an encapsulated metal structure in a feature formed in a substrate. The sidewalls and bottom of the feature are covered by a barrier layer and the feature is filled with metal, preferably by electroplating. A recess is formed in the metal, and an additional barrier layer is deposited, covering the top surface of the metal and contacting the first barrier layer. The additional barrier layer is planarized, preferably by chemical-mechanical polishing. The method may be used in fabricating a MIM capacitor, with the encapsulated metal structure serving as the lower plate of the capacitor. A second substrate layer is deposited on the top surface of the substrate, with an opening overlying the encapsulated metal structure. A dielectric layer is deposited in the opening, covering the encapsulated metal structure at the bottom thereof. An additional layer, serving as the upper plate of the capacitor, is deposited to cover the dielectric layer and to fill the opening. The dielectric layer and the additional layer are planarized, preferably by CMP.